Properties

Label 2-78408-1.1-c1-0-4
Degree $2$
Conductor $78408$
Sign $1$
Analytic cond. $626.091$
Root an. cond. $25.0218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 5·13-s − 5·17-s − 8·19-s + 4·23-s − 4·25-s + 3·29-s − 4·31-s + 3·37-s − 6·41-s − 4·43-s + 12·47-s − 7·49-s + 10·53-s − 8·59-s + 5·61-s + 5·65-s + 8·67-s − 16·71-s + 5·73-s − 4·79-s + 4·83-s − 5·85-s − 3·89-s − 8·95-s + 2·97-s + 101-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.38·13-s − 1.21·17-s − 1.83·19-s + 0.834·23-s − 4/5·25-s + 0.557·29-s − 0.718·31-s + 0.493·37-s − 0.937·41-s − 0.609·43-s + 1.75·47-s − 49-s + 1.37·53-s − 1.04·59-s + 0.640·61-s + 0.620·65-s + 0.977·67-s − 1.89·71-s + 0.585·73-s − 0.450·79-s + 0.439·83-s − 0.542·85-s − 0.317·89-s − 0.820·95-s + 0.203·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78408\)    =    \(2^{3} \cdot 3^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(626.091\)
Root analytic conductor: \(25.0218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.990028644\)
\(L(\frac12)\) \(\approx\) \(1.990028644\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.90267563411973, −13.33764094490728, −13.22243300277618, −12.68836376472535, −12.02276516858359, −11.38200659913948, −11.02468143731798, −10.52759123283480, −10.17210976845132, −9.331275527372819, −8.931455670549542, −8.495266082730103, −8.129902643387646, −7.185269207110996, −6.795792471887600, −6.158582504431025, −5.933542599535868, −5.133075001806657, −4.464927688636913, −4.010654016654985, −3.414117431360098, −2.554737831223360, −2.026037895147185, −1.411609347709741, −0.4536316466710574, 0.4536316466710574, 1.411609347709741, 2.026037895147185, 2.554737831223360, 3.414117431360098, 4.010654016654985, 4.464927688636913, 5.133075001806657, 5.933542599535868, 6.158582504431025, 6.795792471887600, 7.185269207110996, 8.129902643387646, 8.495266082730103, 8.931455670549542, 9.331275527372819, 10.17210976845132, 10.52759123283480, 11.02468143731798, 11.38200659913948, 12.02276516858359, 12.68836376472535, 13.22243300277618, 13.33764094490728, 13.90267563411973

Graph of the $Z$-function along the critical line