Properties

Label 2-76608-1.1-c1-0-57
Degree $2$
Conductor $76608$
Sign $1$
Analytic cond. $611.717$
Root an. cond. $24.7329$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 7-s + 2·11-s − 4·13-s − 19-s − 6·23-s + 11·25-s + 10·29-s + 4·35-s − 6·37-s + 10·41-s + 8·43-s + 12·47-s + 49-s − 6·53-s + 8·55-s + 12·59-s + 2·61-s − 16·65-s − 2·67-s − 12·71-s − 6·73-s + 2·77-s − 2·79-s + 2·89-s − 4·91-s − 4·95-s + ⋯
L(s)  = 1  + 1.78·5-s + 0.377·7-s + 0.603·11-s − 1.10·13-s − 0.229·19-s − 1.25·23-s + 11/5·25-s + 1.85·29-s + 0.676·35-s − 0.986·37-s + 1.56·41-s + 1.21·43-s + 1.75·47-s + 1/7·49-s − 0.824·53-s + 1.07·55-s + 1.56·59-s + 0.256·61-s − 1.98·65-s − 0.244·67-s − 1.42·71-s − 0.702·73-s + 0.227·77-s − 0.225·79-s + 0.211·89-s − 0.419·91-s − 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76608\)    =    \(2^{6} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(611.717\)
Root analytic conductor: \(24.7329\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 76608,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.353946220\)
\(L(\frac12)\) \(\approx\) \(4.353946220\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.10082977468078, −13.72265387674709, −13.10221038246246, −12.45103163645413, −12.22101247946716, −11.66294625119060, −10.80626646641012, −10.49046152144780, −9.904909423282864, −9.690837779767759, −8.936176736022018, −8.715272301424462, −7.917589158778408, −7.264154370877330, −6.789451043497804, −6.161186853639744, −5.745637057307158, −5.320503721984352, −4.442715189801095, −4.292960657254866, −3.132237795429065, −2.445999083016592, −2.160901655696208, −1.394607233700173, −0.6929320604490985, 0.6929320604490985, 1.394607233700173, 2.160901655696208, 2.445999083016592, 3.132237795429065, 4.292960657254866, 4.442715189801095, 5.320503721984352, 5.745637057307158, 6.161186853639744, 6.789451043497804, 7.264154370877330, 7.917589158778408, 8.715272301424462, 8.936176736022018, 9.690837779767759, 9.904909423282864, 10.49046152144780, 10.80626646641012, 11.66294625119060, 12.22101247946716, 12.45103163645413, 13.10221038246246, 13.72265387674709, 14.10082977468078

Graph of the $Z$-function along the critical line