Properties

Label 2-273e2-1.1-c1-0-8
Degree $2$
Conductor $74529$
Sign $1$
Analytic cond. $595.117$
Root an. cond. $24.3950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 3·8-s − 16-s − 2·17-s − 4·19-s + 6·23-s − 5·25-s − 4·29-s + 5·32-s − 2·34-s + 10·37-s − 4·38-s + 12·41-s − 4·43-s + 6·46-s − 10·47-s − 5·50-s − 12·53-s − 4·58-s − 14·59-s + 10·61-s + 7·64-s + 2·68-s − 8·71-s + 2·73-s + 10·74-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.06·8-s − 1/4·16-s − 0.485·17-s − 0.917·19-s + 1.25·23-s − 25-s − 0.742·29-s + 0.883·32-s − 0.342·34-s + 1.64·37-s − 0.648·38-s + 1.87·41-s − 0.609·43-s + 0.884·46-s − 1.45·47-s − 0.707·50-s − 1.64·53-s − 0.525·58-s − 1.82·59-s + 1.28·61-s + 7/8·64-s + 0.242·68-s − 0.949·71-s + 0.234·73-s + 1.16·74-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74529\)    =    \(3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(595.117\)
Root analytic conductor: \(24.3950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 74529,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.381344571\)
\(L(\frac12)\) \(\approx\) \(1.381344571\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.13688170050436, −13.40038810308855, −13.07708682916360, −12.79597791531004, −12.30017383940589, −11.43944203093884, −11.28517678842542, −10.72261737625521, −9.859221714468182, −9.551224551253492, −9.025032993662848, −8.563414431503675, −7.855587739551667, −7.515647671203320, −6.542930542436213, −6.270173982194655, −5.699218003153217, −5.051705169649308, −4.477246880069562, −4.178047022439526, −3.409959617464624, −2.873648031395085, −2.188831817853934, −1.329583961835285, −0.3513626754533672, 0.3513626754533672, 1.329583961835285, 2.188831817853934, 2.873648031395085, 3.409959617464624, 4.178047022439526, 4.477246880069562, 5.051705169649308, 5.699218003153217, 6.270173982194655, 6.542930542436213, 7.515647671203320, 7.855587739551667, 8.563414431503675, 9.025032993662848, 9.551224551253492, 9.859221714468182, 10.72261737625521, 11.28517678842542, 11.43944203093884, 12.30017383940589, 12.79597791531004, 13.07708682916360, 13.40038810308855, 14.13688170050436

Graph of the $Z$-function along the critical line