Properties

Label 2-73920-1.1-c1-0-122
Degree $2$
Conductor $73920$
Sign $-1$
Analytic cond. $590.254$
Root an. cond. $24.2951$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 7-s + 9-s − 11-s − 2·13-s − 15-s + 6·17-s − 4·19-s − 21-s + 25-s + 27-s − 6·29-s + 4·31-s − 33-s + 35-s − 2·37-s − 2·39-s + 6·41-s − 4·43-s − 45-s + 49-s + 6·51-s − 6·53-s + 55-s − 4·57-s − 2·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.301·11-s − 0.554·13-s − 0.258·15-s + 1.45·17-s − 0.917·19-s − 0.218·21-s + 1/5·25-s + 0.192·27-s − 1.11·29-s + 0.718·31-s − 0.174·33-s + 0.169·35-s − 0.328·37-s − 0.320·39-s + 0.937·41-s − 0.609·43-s − 0.149·45-s + 1/7·49-s + 0.840·51-s − 0.824·53-s + 0.134·55-s − 0.529·57-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 73920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(73920\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(590.254\)
Root analytic conductor: \(24.2951\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 73920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 + T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.39392007764324, −13.88966870852961, −13.27189397246388, −12.85878381276563, −12.32017527593266, −12.04273173908897, −11.29796207822139, −10.79636233405914, −10.16373223577404, −9.859530670332846, −9.256030762780670, −8.741727004508118, −8.142437313741597, −7.653874595544086, −7.361482768713004, −6.617748963475018, −6.052521527577739, −5.444777459567787, −4.769087553088874, −4.253322524651074, −3.493508301991097, −3.178591579345979, −2.423765750699929, −1.791618581313275, −0.8791561332701589, 0, 0.8791561332701589, 1.791618581313275, 2.423765750699929, 3.178591579345979, 3.493508301991097, 4.253322524651074, 4.769087553088874, 5.444777459567787, 6.052521527577739, 6.617748963475018, 7.361482768713004, 7.653874595544086, 8.142437313741597, 8.741727004508118, 9.256030762780670, 9.859530670332846, 10.16373223577404, 10.79636233405914, 11.29796207822139, 12.04273173908897, 12.32017527593266, 12.85878381276563, 13.27189397246388, 13.88966870852961, 14.39392007764324

Graph of the $Z$-function along the critical line