| L(s)  = 1  |     + 3-s     − 5-s     − 7-s     + 9-s     − 11-s     − 2·13-s     − 15-s     + 6·17-s     − 4·19-s     − 21-s         + 25-s     + 27-s     − 6·29-s     + 4·31-s     − 33-s     + 35-s     − 2·37-s     − 2·39-s     + 6·41-s     − 4·43-s     − 45-s         + 49-s     + 6·51-s     − 6·53-s     + 55-s     − 4·57-s         − 2·61-s  + ⋯ | 
 
| L(s)  = 1  |     + 0.577·3-s     − 0.447·5-s     − 0.377·7-s     + 1/3·9-s     − 0.301·11-s     − 0.554·13-s     − 0.258·15-s     + 1.45·17-s     − 0.917·19-s     − 0.218·21-s         + 1/5·25-s     + 0.192·27-s     − 1.11·29-s     + 0.718·31-s     − 0.174·33-s     + 0.169·35-s     − 0.328·37-s     − 0.320·39-s     + 0.937·41-s     − 0.609·43-s     − 0.149·45-s         + 1/7·49-s     + 0.840·51-s     − 0.824·53-s     + 0.134·55-s     − 0.529·57-s         − 0.256·61-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 73920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 - T \)  |    | 
 | 5 |  \( 1 + T \)  |    | 
 | 7 |  \( 1 + T \)  |    | 
 | 11 |  \( 1 + T \)  |    | 
| good | 13 |  \( 1 + 2 T + p T^{2} \)  |  1.13.c  | 
 | 17 |  \( 1 - 6 T + p T^{2} \)  |  1.17.ag  | 
 | 19 |  \( 1 + 4 T + p T^{2} \)  |  1.19.e  | 
 | 23 |  \( 1 + p T^{2} \)  |  1.23.a  | 
 | 29 |  \( 1 + 6 T + p T^{2} \)  |  1.29.g  | 
 | 31 |  \( 1 - 4 T + p T^{2} \)  |  1.31.ae  | 
 | 37 |  \( 1 + 2 T + p T^{2} \)  |  1.37.c  | 
 | 41 |  \( 1 - 6 T + p T^{2} \)  |  1.41.ag  | 
 | 43 |  \( 1 + 4 T + p T^{2} \)  |  1.43.e  | 
 | 47 |  \( 1 + p T^{2} \)  |  1.47.a  | 
 | 53 |  \( 1 + 6 T + p T^{2} \)  |  1.53.g  | 
 | 59 |  \( 1 + p T^{2} \)  |  1.59.a  | 
 | 61 |  \( 1 + 2 T + p T^{2} \)  |  1.61.c  | 
 | 67 |  \( 1 + 4 T + p T^{2} \)  |  1.67.e  | 
 | 71 |  \( 1 + p T^{2} \)  |  1.71.a  | 
 | 73 |  \( 1 - 2 T + p T^{2} \)  |  1.73.ac  | 
 | 79 |  \( 1 + 8 T + p T^{2} \)  |  1.79.i  | 
 | 83 |  \( 1 - 12 T + p T^{2} \)  |  1.83.am  | 
 | 89 |  \( 1 - 6 T + p T^{2} \)  |  1.89.ag  | 
 | 97 |  \( 1 - 2 T + p T^{2} \)  |  1.97.ac  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.39392007764324, −13.88966870852961, −13.27189397246388, −12.85878381276563, −12.32017527593266, −12.04273173908897, −11.29796207822139, −10.79636233405914, −10.16373223577404, −9.859530670332846, −9.256030762780670, −8.741727004508118, −8.142437313741597, −7.653874595544086, −7.361482768713004, −6.617748963475018, −6.052521527577739, −5.444777459567787, −4.769087553088874, −4.253322524651074, −3.493508301991097, −3.178591579345979, −2.423765750699929, −1.791618581313275, −0.8791561332701589, 0, 
0.8791561332701589, 1.791618581313275, 2.423765750699929, 3.178591579345979, 3.493508301991097, 4.253322524651074, 4.769087553088874, 5.444777459567787, 6.052521527577739, 6.617748963475018, 7.361482768713004, 7.653874595544086, 8.142437313741597, 8.741727004508118, 9.256030762780670, 9.859530670332846, 10.16373223577404, 10.79636233405914, 11.29796207822139, 12.04273173908897, 12.32017527593266, 12.85878381276563, 13.27189397246388, 13.88966870852961, 14.39392007764324