Properties

Label 2-73920-1.1-c1-0-53
Degree $2$
Conductor $73920$
Sign $1$
Analytic cond. $590.254$
Root an. cond. $24.2951$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 7-s + 9-s + 11-s − 2·13-s + 15-s + 2·17-s − 21-s + 25-s − 27-s + 6·29-s + 8·31-s − 33-s − 35-s + 2·37-s + 2·39-s − 2·41-s + 4·43-s − 45-s + 49-s − 2·51-s + 10·53-s − 55-s + 4·59-s − 6·61-s + 63-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s + 0.301·11-s − 0.554·13-s + 0.258·15-s + 0.485·17-s − 0.218·21-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 1.43·31-s − 0.174·33-s − 0.169·35-s + 0.328·37-s + 0.320·39-s − 0.312·41-s + 0.609·43-s − 0.149·45-s + 1/7·49-s − 0.280·51-s + 1.37·53-s − 0.134·55-s + 0.520·59-s − 0.768·61-s + 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 73920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(73920\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(590.254\)
Root analytic conductor: \(24.2951\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 73920,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.106076183\)
\(L(\frac12)\) \(\approx\) \(2.106076183\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 - T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02353369747634, −13.67462226569542, −12.99617862193905, −12.43282391725933, −11.89868557836357, −11.79989159079352, −11.17910885914861, −10.46154044625479, −10.21218595662121, −9.672642918830819, −8.859716025699818, −8.578465258241294, −7.693504217993554, −7.586249865214125, −6.794973842939654, −6.312327536130167, −5.772117861333844, −5.053364041998657, −4.613361001061115, −4.161009872452286, −3.366726947501337, −2.736727280461010, −2.005010227953867, −1.086974255023124, −0.5854622036434491, 0.5854622036434491, 1.086974255023124, 2.005010227953867, 2.736727280461010, 3.366726947501337, 4.161009872452286, 4.613361001061115, 5.053364041998657, 5.772117861333844, 6.312327536130167, 6.794973842939654, 7.586249865214125, 7.693504217993554, 8.578465258241294, 8.859716025699818, 9.672642918830819, 10.21218595662121, 10.46154044625479, 11.17910885914861, 11.79989159079352, 11.89868557836357, 12.43282391725933, 12.99617862193905, 13.67462226569542, 14.02353369747634

Graph of the $Z$-function along the critical line