Properties

Label 2-72128-1.1-c1-0-9
Degree $2$
Conductor $72128$
Sign $1$
Analytic cond. $575.944$
Root an. cond. $23.9988$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 9-s − 4·11-s + 4·15-s − 6·17-s + 8·19-s + 23-s − 25-s + 4·27-s + 2·29-s + 6·31-s + 8·33-s + 2·37-s + 8·43-s − 2·45-s + 2·47-s + 12·51-s + 6·53-s + 8·55-s − 16·57-s − 6·59-s + 10·61-s + 12·67-s − 2·69-s − 16·71-s − 4·73-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 1/3·9-s − 1.20·11-s + 1.03·15-s − 1.45·17-s + 1.83·19-s + 0.208·23-s − 1/5·25-s + 0.769·27-s + 0.371·29-s + 1.07·31-s + 1.39·33-s + 0.328·37-s + 1.21·43-s − 0.298·45-s + 0.291·47-s + 1.68·51-s + 0.824·53-s + 1.07·55-s − 2.11·57-s − 0.781·59-s + 1.28·61-s + 1.46·67-s − 0.240·69-s − 1.89·71-s − 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72128\)    =    \(2^{6} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(575.944\)
Root analytic conductor: \(23.9988\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 72128,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.003597486\)
\(L(\frac12)\) \(\approx\) \(1.003597486\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99421033701690, −13.49618087977266, −13.13388523885791, −12.31851801092489, −12.14520286611404, −11.47288947761235, −11.20100056611863, −10.84499564956781, −10.07943296993695, −9.820851317788303, −8.896088459740602, −8.496809076823110, −7.841771629558086, −7.350408339596169, −6.958065208170948, −6.205830574336918, −5.695167237400600, −5.231406416802693, −4.569389720082254, −4.292133792641387, −3.300755984785524, −2.809114738458444, −2.076684416112158, −0.8561313586426749, −0.4892144114788938, 0.4892144114788938, 0.8561313586426749, 2.076684416112158, 2.809114738458444, 3.300755984785524, 4.292133792641387, 4.569389720082254, 5.231406416802693, 5.695167237400600, 6.205830574336918, 6.958065208170948, 7.350408339596169, 7.841771629558086, 8.496809076823110, 8.896088459740602, 9.820851317788303, 10.07943296993695, 10.84499564956781, 11.20100056611863, 11.47288947761235, 12.14520286611404, 12.31851801092489, 13.13388523885791, 13.49618087977266, 13.99421033701690

Graph of the $Z$-function along the critical line