Properties

Label 2-7150-1.1-c1-0-184
Degree $2$
Conductor $7150$
Sign $-1$
Analytic cond. $57.0930$
Root an. cond. $7.55599$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 7-s + 8-s − 2·9-s + 11-s + 12-s − 13-s + 14-s + 16-s − 5·17-s − 2·18-s + 3·19-s + 21-s + 22-s − 4·23-s + 24-s − 26-s − 5·27-s + 28-s − 9·29-s − 11·31-s + 32-s + 33-s − 5·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s + 0.353·8-s − 2/3·9-s + 0.301·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 1.21·17-s − 0.471·18-s + 0.688·19-s + 0.218·21-s + 0.213·22-s − 0.834·23-s + 0.204·24-s − 0.196·26-s − 0.962·27-s + 0.188·28-s − 1.67·29-s − 1.97·31-s + 0.176·32-s + 0.174·33-s − 0.857·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7150\)    =    \(2 \cdot 5^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(57.0930\)
Root analytic conductor: \(7.55599\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7150,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
11 \( 1 - T \)
13 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - T + p T^{2} \) 1.7.ab
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 11 T + p T^{2} \) 1.31.l
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.46316845749760788662508415023, −7.01506446981039755747597921766, −5.93623229399867005222989276210, −5.54043486522975993955726719518, −4.67447011824506761277198307151, −3.84206275454317157079632472326, −3.31582867841607494463298023158, −2.26307532894800228691571498663, −1.76164583064395163180285016449, 0, 1.76164583064395163180285016449, 2.26307532894800228691571498663, 3.31582867841607494463298023158, 3.84206275454317157079632472326, 4.67447011824506761277198307151, 5.54043486522975993955726719518, 5.93623229399867005222989276210, 7.01506446981039755747597921766, 7.46316845749760788662508415023

Graph of the $Z$-function along the critical line