Properties

Label 2-704-1.1-c1-0-9
Degree $2$
Conductor $704$
Sign $-1$
Analytic cond. $5.62146$
Root an. cond. $2.37096$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5-s + 6·9-s + 11-s + 6·13-s + 3·15-s − 4·17-s − 6·19-s + 3·23-s − 4·25-s − 9·27-s + 4·29-s − 9·31-s − 3·33-s − 7·37-s − 18·39-s − 2·41-s − 6·43-s − 6·45-s + 12·47-s − 7·49-s + 12·51-s − 2·53-s − 55-s + 18·57-s − 9·59-s − 8·61-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.447·5-s + 2·9-s + 0.301·11-s + 1.66·13-s + 0.774·15-s − 0.970·17-s − 1.37·19-s + 0.625·23-s − 4/5·25-s − 1.73·27-s + 0.742·29-s − 1.61·31-s − 0.522·33-s − 1.15·37-s − 2.88·39-s − 0.312·41-s − 0.914·43-s − 0.894·45-s + 1.75·47-s − 49-s + 1.68·51-s − 0.274·53-s − 0.134·55-s + 2.38·57-s − 1.17·59-s − 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(704\)    =    \(2^{6} \cdot 11\)
Sign: $-1$
Analytic conductor: \(5.62146\)
Root analytic conductor: \(2.37096\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 15 T + p T^{2} \) 1.67.ap
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.52002101501919326240870090206, −9.160498659687230466098193331552, −8.311467161982721001864529099848, −6.98504509565729693752228882014, −6.40504921502263237245950729880, −5.62850913863761469090185038771, −4.54436529233154883694790452663, −3.74572472636749522129925113169, −1.57722880872445814013578262149, 0, 1.57722880872445814013578262149, 3.74572472636749522129925113169, 4.54436529233154883694790452663, 5.62850913863761469090185038771, 6.40504921502263237245950729880, 6.98504509565729693752228882014, 8.311467161982721001864529099848, 9.160498659687230466098193331552, 10.52002101501919326240870090206

Graph of the $Z$-function along the critical line