| L(s)  = 1 | − 7-s             + 6·13-s         + 4·17-s     + 19-s         − 2·23-s     − 5·25-s         − 6·29-s     + 3·31-s             − 7·37-s         + 2·41-s     − 4·43-s         − 6·47-s     − 6·49-s         − 2·53-s             − 10·59-s     − 61-s             − 3·67-s         − 4·71-s     + 3·73-s             + 5·79-s         + 14·83-s             − 16·89-s     − 6·91-s             + 13·97-s         + 101-s     + 103-s         + 107-s  + ⋯ | 
| L(s)  = 1 | − 0.377·7-s             + 1.66·13-s         + 0.970·17-s     + 0.229·19-s         − 0.417·23-s     − 25-s         − 1.11·29-s     + 0.538·31-s             − 1.15·37-s         + 0.312·41-s     − 0.609·43-s         − 0.875·47-s     − 6/7·49-s         − 0.274·53-s             − 1.30·59-s     − 0.128·61-s             − 0.366·67-s         − 0.474·71-s     + 0.351·73-s             + 0.562·79-s         + 1.53·83-s             − 1.69·89-s     − 0.628·91-s             + 1.31·97-s         + 0.0995·101-s     + 0.0985·103-s         + 0.0966·107-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(1.844218314\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.844218314\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 \) |  | 
|  | 11 | \( 1 \) |  | 
| good | 5 | \( 1 + p T^{2} \) | 1.5.a | 
|  | 7 | \( 1 + T + p T^{2} \) | 1.7.b | 
|  | 13 | \( 1 - 6 T + p T^{2} \) | 1.13.ag | 
|  | 17 | \( 1 - 4 T + p T^{2} \) | 1.17.ae | 
|  | 19 | \( 1 - T + p T^{2} \) | 1.19.ab | 
|  | 23 | \( 1 + 2 T + p T^{2} \) | 1.23.c | 
|  | 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g | 
|  | 31 | \( 1 - 3 T + p T^{2} \) | 1.31.ad | 
|  | 37 | \( 1 + 7 T + p T^{2} \) | 1.37.h | 
|  | 41 | \( 1 - 2 T + p T^{2} \) | 1.41.ac | 
|  | 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e | 
|  | 47 | \( 1 + 6 T + p T^{2} \) | 1.47.g | 
|  | 53 | \( 1 + 2 T + p T^{2} \) | 1.53.c | 
|  | 59 | \( 1 + 10 T + p T^{2} \) | 1.59.k | 
|  | 61 | \( 1 + T + p T^{2} \) | 1.61.b | 
|  | 67 | \( 1 + 3 T + p T^{2} \) | 1.67.d | 
|  | 71 | \( 1 + 4 T + p T^{2} \) | 1.71.e | 
|  | 73 | \( 1 - 3 T + p T^{2} \) | 1.73.ad | 
|  | 79 | \( 1 - 5 T + p T^{2} \) | 1.79.af | 
|  | 83 | \( 1 - 14 T + p T^{2} \) | 1.83.ao | 
|  | 89 | \( 1 + 16 T + p T^{2} \) | 1.89.q | 
|  | 97 | \( 1 - 13 T + p T^{2} \) | 1.97.an | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.89004471141708, −13.69235476655907, −13.29342352736920, −12.61358858195257, −12.14390838628369, −11.67483209644052, −11.07163013417879, −10.69450576220065, −10.07780774576248, −9.497979608071241, −9.227944078221969, −8.344926476956559, −8.086724873537360, −7.558433835668427, −6.724396177634521, −6.389446149916568, −5.671142144967163, −5.449604455735426, −4.509846022595826, −3.879616315850522, −3.384079181314210, −2.961128858523547, −1.777302401608994, −1.494499420885576, −0.4517557996375722, 
0.4517557996375722, 1.494499420885576, 1.777302401608994, 2.961128858523547, 3.384079181314210, 3.879616315850522, 4.509846022595826, 5.449604455735426, 5.671142144967163, 6.389446149916568, 6.724396177634521, 7.558433835668427, 8.086724873537360, 8.344926476956559, 9.227944078221969, 9.497979608071241, 10.07780774576248, 10.69450576220065, 11.07163013417879, 11.67483209644052, 12.14390838628369, 12.61358858195257, 13.29342352736920, 13.69235476655907, 13.89004471141708
