Properties

Label 2-264e2-1.1-c1-0-40
Degree $2$
Conductor $69696$
Sign $1$
Analytic cond. $556.525$
Root an. cond. $23.5907$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 6·13-s + 4·17-s + 19-s − 2·23-s − 5·25-s − 6·29-s + 3·31-s − 7·37-s + 2·41-s − 4·43-s − 6·47-s − 6·49-s − 2·53-s − 10·59-s − 61-s − 3·67-s − 4·71-s + 3·73-s + 5·79-s + 14·83-s − 16·89-s − 6·91-s + 13·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.377·7-s + 1.66·13-s + 0.970·17-s + 0.229·19-s − 0.417·23-s − 25-s − 1.11·29-s + 0.538·31-s − 1.15·37-s + 0.312·41-s − 0.609·43-s − 0.875·47-s − 6/7·49-s − 0.274·53-s − 1.30·59-s − 0.128·61-s − 0.366·67-s − 0.474·71-s + 0.351·73-s + 0.562·79-s + 1.53·83-s − 1.69·89-s − 0.628·91-s + 1.31·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(69696\)    =    \(2^{6} \cdot 3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(556.525\)
Root analytic conductor: \(23.5907\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 69696,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.844218314\)
\(L(\frac12)\) \(\approx\) \(1.844218314\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.89004471141708, −13.69235476655907, −13.29342352736920, −12.61358858195257, −12.14390838628369, −11.67483209644052, −11.07163013417879, −10.69450576220065, −10.07780774576248, −9.497979608071241, −9.227944078221969, −8.344926476956559, −8.086724873537360, −7.558433835668427, −6.724396177634521, −6.389446149916568, −5.671142144967163, −5.449604455735426, −4.509846022595826, −3.879616315850522, −3.384079181314210, −2.961128858523547, −1.777302401608994, −1.494499420885576, −0.4517557996375722, 0.4517557996375722, 1.494499420885576, 1.777302401608994, 2.961128858523547, 3.384079181314210, 3.879616315850522, 4.509846022595826, 5.449604455735426, 5.671142144967163, 6.389446149916568, 6.724396177634521, 7.558433835668427, 8.086724873537360, 8.344926476956559, 9.227944078221969, 9.497979608071241, 10.07780774576248, 10.69450576220065, 11.07163013417879, 11.67483209644052, 12.14390838628369, 12.61358858195257, 13.29342352736920, 13.69235476655907, 13.89004471141708

Graph of the $Z$-function along the critical line