Properties

Label 2-68544-1.1-c1-0-90
Degree $2$
Conductor $68544$
Sign $-1$
Analytic cond. $547.326$
Root an. cond. $23.3950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s − 6·13-s + 17-s + 2·19-s − 25-s + 8·29-s − 2·35-s − 2·37-s − 2·41-s − 8·43-s + 8·47-s + 49-s − 2·53-s + 12·59-s + 4·61-s − 12·65-s − 12·67-s + 8·73-s − 8·79-s + 2·85-s − 10·89-s + 6·91-s + 4·95-s + 12·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s − 1.66·13-s + 0.242·17-s + 0.458·19-s − 1/5·25-s + 1.48·29-s − 0.338·35-s − 0.328·37-s − 0.312·41-s − 1.21·43-s + 1.16·47-s + 1/7·49-s − 0.274·53-s + 1.56·59-s + 0.512·61-s − 1.48·65-s − 1.46·67-s + 0.936·73-s − 0.900·79-s + 0.216·85-s − 1.05·89-s + 0.628·91-s + 0.410·95-s + 1.21·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68544\)    =    \(2^{6} \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(547.326\)
Root analytic conductor: \(23.3950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 68544,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.33611694408721, −13.94983963682972, −13.43977332240790, −12.96264628665388, −12.38397067834188, −11.92160818381133, −11.62464667821861, −10.69137236763962, −10.15796232582074, −9.942312429373763, −9.490806012090595, −8.875222147570215, −8.309706617905440, −7.660265071325396, −7.077449218426652, −6.701087196873183, −6.019127484694627, −5.458850070847472, −5.004995344772440, −4.436932291301575, −3.628835965198323, −2.893417249311838, −2.447352438292791, −1.793746147514218, −0.9341015179824797, 0, 0.9341015179824797, 1.793746147514218, 2.447352438292791, 2.893417249311838, 3.628835965198323, 4.436932291301575, 5.004995344772440, 5.458850070847472, 6.019127484694627, 6.701087196873183, 7.077449218426652, 7.660265071325396, 8.309706617905440, 8.875222147570215, 9.490806012090595, 9.942312429373763, 10.15796232582074, 10.69137236763962, 11.62464667821861, 11.92160818381133, 12.38397067834188, 12.96264628665388, 13.43977332240790, 13.94983963682972, 14.33611694408721

Graph of the $Z$-function along the critical line