Properties

Label 2-68450-1.1-c1-0-3
Degree $2$
Conductor $68450$
Sign $1$
Analytic cond. $546.576$
Root an. cond. $23.3789$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·6-s + 8-s + 9-s − 5·11-s − 2·12-s − 13-s + 16-s + 4·17-s + 18-s − 5·19-s − 5·22-s − 23-s − 2·24-s − 26-s + 4·27-s − 2·29-s − 4·31-s + 32-s + 10·33-s + 4·34-s + 36-s − 5·38-s + 2·39-s + 10·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s + 0.353·8-s + 1/3·9-s − 1.50·11-s − 0.577·12-s − 0.277·13-s + 1/4·16-s + 0.970·17-s + 0.235·18-s − 1.14·19-s − 1.06·22-s − 0.208·23-s − 0.408·24-s − 0.196·26-s + 0.769·27-s − 0.371·29-s − 0.718·31-s + 0.176·32-s + 1.74·33-s + 0.685·34-s + 1/6·36-s − 0.811·38-s + 0.320·39-s + 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68450\)    =    \(2 \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(546.576\)
Root analytic conductor: \(23.3789\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 68450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6621209052\)
\(L(\frac12)\) \(\approx\) \(0.6621209052\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
37 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.24712645073841, −13.48372142441783, −13.01094216890672, −12.66603304869485, −12.28157931081701, −11.63360481833614, −11.17899548681497, −10.82504281972024, −10.19579969053525, −9.983594274326951, −9.115709064130865, −8.297662991808601, −7.945118484718053, −7.308247588939761, −6.763353972680545, −6.120519876928632, −5.678749158209142, −5.279265902327832, −4.778288129452700, −4.209291910839969, −3.406277050475167, −2.783150704650598, −2.160338050020467, −1.317085408511460, −0.2579101413914593, 0.2579101413914593, 1.317085408511460, 2.160338050020467, 2.783150704650598, 3.406277050475167, 4.209291910839969, 4.778288129452700, 5.279265902327832, 5.678749158209142, 6.120519876928632, 6.763353972680545, 7.308247588939761, 7.945118484718053, 8.297662991808601, 9.115709064130865, 9.983594274326951, 10.19579969053525, 10.82504281972024, 11.17899548681497, 11.63360481833614, 12.28157931081701, 12.66603304869485, 13.01094216890672, 13.48372142441783, 14.24712645073841

Graph of the $Z$-function along the critical line