Properties

Label 2-68400-1.1-c1-0-129
Degree $2$
Conductor $68400$
Sign $-1$
Analytic cond. $546.176$
Root an. cond. $23.3704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·11-s + 2·13-s + 6·17-s + 19-s + 6·23-s + 2·29-s + 6·31-s − 10·37-s + 6·43-s + 6·47-s − 7·49-s − 10·53-s + 2·59-s − 6·61-s − 8·67-s − 12·71-s − 16·73-s + 14·79-s + 12·83-s − 4·89-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.20·11-s + 0.554·13-s + 1.45·17-s + 0.229·19-s + 1.25·23-s + 0.371·29-s + 1.07·31-s − 1.64·37-s + 0.914·43-s + 0.875·47-s − 49-s − 1.37·53-s + 0.260·59-s − 0.768·61-s − 0.977·67-s − 1.42·71-s − 1.87·73-s + 1.57·79-s + 1.31·83-s − 0.423·89-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68400\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(546.176\)
Root analytic conductor: \(23.3704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 68400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.43141549534308, −13.69917003719094, −13.62049073206469, −12.84615684551720, −12.45567851421179, −11.98620425691060, −11.39064179714760, −10.79172138238073, −10.31831692756105, −10.09554956727816, −9.200853641017676, −8.891499967565878, −8.167442782952006, −7.714973326915497, −7.348599264543097, −6.580310954204445, −6.028509067134593, −5.427052893515706, −4.987982352386810, −4.430068329254750, −3.503399618074367, −3.072217327941363, −2.582596066758650, −1.540278850648151, −1.006371515369161, 0, 1.006371515369161, 1.540278850648151, 2.582596066758650, 3.072217327941363, 3.503399618074367, 4.430068329254750, 4.987982352386810, 5.427052893515706, 6.028509067134593, 6.580310954204445, 7.348599264543097, 7.714973326915497, 8.167442782952006, 8.891499967565878, 9.200853641017676, 10.09554956727816, 10.31831692756105, 10.79172138238073, 11.39064179714760, 11.98620425691060, 12.45567851421179, 12.84615684551720, 13.62049073206469, 13.69917003719094, 14.43141549534308

Graph of the $Z$-function along the critical line