Properties

Label 2-66066-1.1-c1-0-9
Degree $2$
Conductor $66066$
Sign $1$
Analytic cond. $527.539$
Root an. cond. $22.9682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s + 7-s − 8-s + 9-s + 12-s + 13-s − 14-s + 16-s − 4·17-s − 18-s + 21-s − 24-s − 5·25-s − 26-s + 27-s + 28-s − 2·29-s − 2·31-s − 32-s + 4·34-s + 36-s − 8·37-s + 39-s + 2·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.288·12-s + 0.277·13-s − 0.267·14-s + 1/4·16-s − 0.970·17-s − 0.235·18-s + 0.218·21-s − 0.204·24-s − 25-s − 0.196·26-s + 0.192·27-s + 0.188·28-s − 0.371·29-s − 0.359·31-s − 0.176·32-s + 0.685·34-s + 1/6·36-s − 1.31·37-s + 0.160·39-s + 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66066\)    =    \(2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(527.539\)
Root analytic conductor: \(22.9682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 66066,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.550772490\)
\(L(\frac12)\) \(\approx\) \(1.550772490\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.20525840707104, −13.63763811501331, −13.38645401558715, −12.65602840758963, −12.14674073285936, −11.57126066934437, −11.12061054391687, −10.59399282981814, −10.11619629517154, −9.519850410455866, −9.002655798112919, −8.644278911652728, −8.091254444094846, −7.589423330432867, −7.069048292077101, −6.526089857409628, −5.901682429970419, −5.239205966466950, −4.586851775377504, −3.845767798037626, −3.418272891384533, −2.520888981092585, −1.991815144586546, −1.460804831732404, −0.4410115967940642, 0.4410115967940642, 1.460804831732404, 1.991815144586546, 2.520888981092585, 3.418272891384533, 3.845767798037626, 4.586851775377504, 5.239205966466950, 5.901682429970419, 6.526089857409628, 7.069048292077101, 7.589423330432867, 8.091254444094846, 8.644278911652728, 9.002655798112919, 9.519850410455866, 10.11619629517154, 10.59399282981814, 11.12061054391687, 11.57126066934437, 12.14674073285936, 12.65602840758963, 13.38645401558715, 13.63763811501331, 14.20525840707104

Graph of the $Z$-function along the critical line