Properties

Label 2-64350-1.1-c1-0-1
Degree $2$
Conductor $64350$
Sign $1$
Analytic cond. $513.837$
Root an. cond. $22.6679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s + 11-s + 13-s + 14-s + 16-s − 17-s − 4·19-s − 22-s − 8·23-s − 26-s − 28-s + 8·29-s − 32-s + 34-s − 7·37-s + 4·38-s + 8·41-s − 11·43-s + 44-s + 8·46-s − 47-s − 6·49-s + 52-s + 2·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s + 0.301·11-s + 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.242·17-s − 0.917·19-s − 0.213·22-s − 1.66·23-s − 0.196·26-s − 0.188·28-s + 1.48·29-s − 0.176·32-s + 0.171·34-s − 1.15·37-s + 0.648·38-s + 1.24·41-s − 1.67·43-s + 0.150·44-s + 1.17·46-s − 0.145·47-s − 6/7·49-s + 0.138·52-s + 0.274·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64350\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(513.837\)
Root analytic conductor: \(22.6679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 64350,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5122083492\)
\(L(\frac12)\) \(\approx\) \(0.5122083492\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
13 \( 1 - T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.22515928934373, −13.69743193899020, −13.34256827367924, −12.48007936225048, −12.19848079512232, −11.79019919148981, −11.03616429073975, −10.59850221173978, −10.16769647113140, −9.675356758223257, −9.043345415369789, −8.663726461198447, −7.992922138581272, −7.762719875299828, −6.734555399715045, −6.549013127871183, −6.046220883628081, −5.346276583202277, −4.484955508906177, −4.088587166604232, −3.241897845569760, −2.738204300541557, −1.855156079023228, −1.413209931671082, −0.2660740739984768, 0.2660740739984768, 1.413209931671082, 1.855156079023228, 2.738204300541557, 3.241897845569760, 4.088587166604232, 4.484955508906177, 5.346276583202277, 6.046220883628081, 6.549013127871183, 6.734555399715045, 7.762719875299828, 7.992922138581272, 8.663726461198447, 9.043345415369789, 9.675356758223257, 10.16769647113140, 10.59850221173978, 11.03616429073975, 11.79019919148981, 12.19848079512232, 12.48007936225048, 13.34256827367924, 13.69743193899020, 14.22515928934373

Graph of the $Z$-function along the critical line