Properties

Label 2-252e2-1.1-c1-0-13
Degree $2$
Conductor $63504$
Sign $1$
Analytic cond. $507.081$
Root an. cond. $22.5184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 3·11-s − 13-s − 3·17-s + 5·19-s − 23-s − 4·25-s + 9·29-s + 4·31-s + 5·37-s − 7·41-s − 3·43-s + 8·47-s + 9·53-s − 3·55-s − 4·59-s − 2·61-s + 65-s − 12·67-s − 8·71-s + 13·73-s − 8·79-s − 13·83-s + 3·85-s + 9·89-s − 5·95-s + 17·97-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.904·11-s − 0.277·13-s − 0.727·17-s + 1.14·19-s − 0.208·23-s − 4/5·25-s + 1.67·29-s + 0.718·31-s + 0.821·37-s − 1.09·41-s − 0.457·43-s + 1.16·47-s + 1.23·53-s − 0.404·55-s − 0.520·59-s − 0.256·61-s + 0.124·65-s − 1.46·67-s − 0.949·71-s + 1.52·73-s − 0.900·79-s − 1.42·83-s + 0.325·85-s + 0.953·89-s − 0.512·95-s + 1.72·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63504\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(507.081\)
Root analytic conductor: \(22.5184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 63504,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.236989692\)
\(L(\frac12)\) \(\approx\) \(2.236989692\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 13 T + p T^{2} \) 1.83.n
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.16102006772377, −13.75455052011619, −13.41100381179114, −12.66766637171668, −11.97060058201567, −11.81459514597867, −11.47032689904336, −10.64889123835245, −10.10319685835278, −9.772374925197093, −8.968096917859923, −8.713327067113233, −8.036556480782758, −7.440042636706514, −7.050882472009271, −6.306184502286291, −5.999605153176435, −5.126380319125855, −4.554094713954125, −4.124649411905766, −3.401571774417317, −2.832023345361263, −2.074866740701574, −1.243040753150477, −0.5487567586613977, 0.5487567586613977, 1.243040753150477, 2.074866740701574, 2.832023345361263, 3.401571774417317, 4.124649411905766, 4.554094713954125, 5.126380319125855, 5.999605153176435, 6.306184502286291, 7.050882472009271, 7.440042636706514, 8.036556480782758, 8.713327067113233, 8.968096917859923, 9.772374925197093, 10.10319685835278, 10.64889123835245, 11.47032689904336, 11.81459514597867, 11.97060058201567, 12.66766637171668, 13.41100381179114, 13.75455052011619, 14.16102006772377

Graph of the $Z$-function along the critical line