Properties

Label 2-59850-1.1-c1-0-27
Degree $2$
Conductor $59850$
Sign $1$
Analytic cond. $477.904$
Root an. cond. $21.8610$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s − 3·11-s + 13-s + 14-s + 16-s + 19-s + 3·22-s + 3·23-s − 26-s − 28-s + 6·29-s − 7·31-s − 32-s + 10·37-s − 38-s − 12·41-s + 43-s − 3·44-s − 3·46-s + 6·47-s + 49-s + 52-s + 9·53-s + 56-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s − 0.904·11-s + 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.229·19-s + 0.639·22-s + 0.625·23-s − 0.196·26-s − 0.188·28-s + 1.11·29-s − 1.25·31-s − 0.176·32-s + 1.64·37-s − 0.162·38-s − 1.87·41-s + 0.152·43-s − 0.452·44-s − 0.442·46-s + 0.875·47-s + 1/7·49-s + 0.138·52-s + 1.23·53-s + 0.133·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(59850\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(477.904\)
Root analytic conductor: \(21.8610\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 59850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.403158925\)
\(L(\frac12)\) \(\approx\) \(1.403158925\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 15 T + p T^{2} \) 1.59.ap
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.49665270078746, −13.62382803801548, −13.32777060437136, −12.80372634060741, −12.27197240195221, −11.66986901935918, −11.18940548740715, −10.68886479084250, −10.05829073282246, −9.906963648326944, −9.058930505773809, −8.688361635081008, −8.177111589821823, −7.531963323282728, −7.105648694714745, −6.543374873654415, −5.902526188209754, −5.337402514849813, −4.801692542409560, −3.902326570624352, −3.345478693958162, −2.610758117059717, −2.159363891526662, −1.139594040731655, −0.5052681892213681, 0.5052681892213681, 1.139594040731655, 2.159363891526662, 2.610758117059717, 3.345478693958162, 3.902326570624352, 4.801692542409560, 5.337402514849813, 5.902526188209754, 6.543374873654415, 7.105648694714745, 7.531963323282728, 8.177111589821823, 8.688361635081008, 9.058930505773809, 9.906963648326944, 10.05829073282246, 10.68886479084250, 11.18940548740715, 11.66986901935918, 12.27197240195221, 12.80372634060741, 13.32777060437136, 13.62382803801548, 14.49665270078746

Graph of the $Z$-function along the critical line