Properties

Label 2-5819-1.1-c1-0-92
Degree $2$
Conductor $5819$
Sign $1$
Analytic cond. $46.4649$
Root an. cond. $6.81652$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s − 5-s + 2·6-s + 2·7-s − 2·9-s + 2·10-s − 11-s − 2·12-s + 4·13-s − 4·14-s + 15-s − 4·16-s + 2·17-s + 4·18-s − 2·20-s − 2·21-s + 2·22-s − 4·25-s − 8·26-s + 5·27-s + 4·28-s − 2·30-s + 7·31-s + 8·32-s + 33-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s − 0.447·5-s + 0.816·6-s + 0.755·7-s − 2/3·9-s + 0.632·10-s − 0.301·11-s − 0.577·12-s + 1.10·13-s − 1.06·14-s + 0.258·15-s − 16-s + 0.485·17-s + 0.942·18-s − 0.447·20-s − 0.436·21-s + 0.426·22-s − 4/5·25-s − 1.56·26-s + 0.962·27-s + 0.755·28-s − 0.365·30-s + 1.25·31-s + 1.41·32-s + 0.174·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5819\)    =    \(11 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(46.4649\)
Root analytic conductor: \(6.81652\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5819,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6083685841\)
\(L(\frac12)\) \(\approx\) \(0.6083685841\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad11 \( 1 + T \)
23 \( 1 \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.212973485084645328991374926218, −7.72626049705676692250966013712, −6.87252557874530003114725570070, −6.10199205171023259542319673445, −5.35806526558242506412465562277, −4.54560153511675547350568265865, −3.61425154305823041342611871942, −2.48240948578189648627819728306, −1.42318267584838641544176432302, −0.57357212901825478877549470562, 0.57357212901825478877549470562, 1.42318267584838641544176432302, 2.48240948578189648627819728306, 3.61425154305823041342611871942, 4.54560153511675547350568265865, 5.35806526558242506412465562277, 6.10199205171023259542319673445, 6.87252557874530003114725570070, 7.72626049705676692250966013712, 8.212973485084645328991374926218

Graph of the $Z$-function along the critical line