Properties

Label 2-5760-1.1-c1-0-36
Degree $2$
Conductor $5760$
Sign $1$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s + 2·11-s − 8·23-s + 25-s + 2·29-s + 2·31-s + 4·35-s + 8·37-s + 2·41-s + 4·43-s + 9·49-s − 6·53-s + 2·55-s + 14·59-s + 14·61-s − 4·67-s + 8·71-s − 10·73-s + 8·77-s − 6·79-s + 12·83-s − 14·89-s + 18·97-s − 10·101-s + 16·103-s − 14·109-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s + 0.603·11-s − 1.66·23-s + 1/5·25-s + 0.371·29-s + 0.359·31-s + 0.676·35-s + 1.31·37-s + 0.312·41-s + 0.609·43-s + 9/7·49-s − 0.824·53-s + 0.269·55-s + 1.82·59-s + 1.79·61-s − 0.488·67-s + 0.949·71-s − 1.17·73-s + 0.911·77-s − 0.675·79-s + 1.31·83-s − 1.48·89-s + 1.82·97-s − 0.995·101-s + 1.57·103-s − 1.34·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.872913826\)
\(L(\frac12)\) \(\approx\) \(2.872913826\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.131594756834447502080348823939, −7.56151588258959383908652429756, −6.63664175394745146065158701964, −5.93399176588351621916952557993, −5.25298500002688243277781975342, −4.42832903326511711184997057727, −3.89664727381198336373592494897, −2.56561855381752511488181703499, −1.85829193607977348011558635044, −0.956960668400174358503119313971, 0.956960668400174358503119313971, 1.85829193607977348011558635044, 2.56561855381752511488181703499, 3.89664727381198336373592494897, 4.42832903326511711184997057727, 5.25298500002688243277781975342, 5.93399176588351621916952557993, 6.63664175394745146065158701964, 7.56151588258959383908652429756, 8.131594756834447502080348823939

Graph of the $Z$-function along the critical line