Properties

Label 2-24e2-1.1-c1-0-2
Degree $2$
Conductor $576$
Sign $1$
Analytic cond. $4.59938$
Root an. cond. $2.14461$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 4·7-s + 4·11-s + 2·13-s + 6·17-s + 4·19-s − 25-s + 2·29-s + 4·31-s − 8·35-s + 2·37-s − 2·41-s − 4·43-s − 8·47-s + 9·49-s + 10·53-s + 8·55-s − 4·59-s − 6·61-s + 4·65-s − 4·67-s + 16·71-s − 6·73-s − 16·77-s + 4·79-s + 12·83-s + 12·85-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.51·7-s + 1.20·11-s + 0.554·13-s + 1.45·17-s + 0.917·19-s − 1/5·25-s + 0.371·29-s + 0.718·31-s − 1.35·35-s + 0.328·37-s − 0.312·41-s − 0.609·43-s − 1.16·47-s + 9/7·49-s + 1.37·53-s + 1.07·55-s − 0.520·59-s − 0.768·61-s + 0.496·65-s − 0.488·67-s + 1.89·71-s − 0.702·73-s − 1.82·77-s + 0.450·79-s + 1.31·83-s + 1.30·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(4.59938\)
Root analytic conductor: \(2.14461\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 576,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.634752516\)
\(L(\frac12)\) \(\approx\) \(1.634752516\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.45197268721137434518942050384, −9.629712905768100889040064075295, −9.406971771311537534006960334033, −8.131897207027853144179789700526, −6.83791452023955841983204630481, −6.23593377615022317750995350027, −5.42460705368026111370695370006, −3.81654902962345598726342363363, −2.97479066673588337231673992698, −1.26883614185569776706713350485, 1.26883614185569776706713350485, 2.97479066673588337231673992698, 3.81654902962345598726342363363, 5.42460705368026111370695370006, 6.23593377615022317750995350027, 6.83791452023955841983204630481, 8.131897207027853144179789700526, 9.406971771311537534006960334033, 9.629712905768100889040064075295, 10.45197268721137434518942050384

Graph of the $Z$-function along the critical line