Properties

Label 2-57330-1.1-c1-0-98
Degree $2$
Conductor $57330$
Sign $-1$
Analytic cond. $457.782$
Root an. cond. $21.3958$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 8-s − 10-s − 4·11-s + 13-s + 16-s + 2·17-s − 4·19-s − 20-s − 4·22-s − 4·23-s + 25-s + 26-s − 2·29-s + 8·31-s + 32-s + 2·34-s − 6·37-s − 4·38-s − 40-s + 10·41-s − 4·43-s − 4·44-s − 4·46-s + 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s − 0.316·10-s − 1.20·11-s + 0.277·13-s + 1/4·16-s + 0.485·17-s − 0.917·19-s − 0.223·20-s − 0.852·22-s − 0.834·23-s + 1/5·25-s + 0.196·26-s − 0.371·29-s + 1.43·31-s + 0.176·32-s + 0.342·34-s − 0.986·37-s − 0.648·38-s − 0.158·40-s + 1.56·41-s − 0.609·43-s − 0.603·44-s − 0.589·46-s + 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(57330\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(457.782\)
Root analytic conductor: \(21.3958\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 57330,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53163852378278, −14.18706059097619, −13.37355181107495, −13.27951032849569, −12.62274472206506, −12.02065390872981, −11.83343200483024, −11.01545288542987, −10.57798266638228, −10.23836764719469, −9.594356270811414, −8.754039741811760, −8.296756739705971, −7.786008653823660, −7.336115073663466, −6.654686450607162, −5.991080479697107, −5.660254845529507, −4.836329743886886, −4.482613703848471, −3.767072711411085, −3.217610745697672, −2.505490963485529, −1.981299038353714, −0.9442174890710293, 0, 0.9442174890710293, 1.981299038353714, 2.505490963485529, 3.217610745697672, 3.767072711411085, 4.482613703848471, 4.836329743886886, 5.660254845529507, 5.991080479697107, 6.654686450607162, 7.336115073663466, 7.786008653823660, 8.296756739705971, 8.754039741811760, 9.594356270811414, 10.23836764719469, 10.57798266638228, 11.01545288542987, 11.83343200483024, 12.02065390872981, 12.62274472206506, 13.27951032849569, 13.37355181107495, 14.18706059097619, 14.53163852378278

Graph of the $Z$-function along the critical line