Properties

Label 2-56144-1.1-c1-0-21
Degree $2$
Conductor $56144$
Sign $-1$
Analytic cond. $448.312$
Root an. cond. $21.1733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5-s + 4·7-s + 6·9-s − 6·13-s + 3·15-s − 4·17-s − 2·19-s + 12·21-s − 3·23-s − 4·25-s + 9·27-s − 29-s + 7·31-s + 4·35-s − 11·37-s − 18·39-s − 4·41-s − 4·43-s + 6·45-s − 8·47-s + 9·49-s − 12·51-s + 2·53-s − 6·57-s + 3·59-s − 2·61-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.447·5-s + 1.51·7-s + 2·9-s − 1.66·13-s + 0.774·15-s − 0.970·17-s − 0.458·19-s + 2.61·21-s − 0.625·23-s − 4/5·25-s + 1.73·27-s − 0.185·29-s + 1.25·31-s + 0.676·35-s − 1.80·37-s − 2.88·39-s − 0.624·41-s − 0.609·43-s + 0.894·45-s − 1.16·47-s + 9/7·49-s − 1.68·51-s + 0.274·53-s − 0.794·57-s + 0.390·59-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56144\)    =    \(2^{4} \cdot 11^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(448.312\)
Root analytic conductor: \(21.1733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 56144,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
29 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 3 T + p T^{2} \) 1.23.d
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 15 T + p T^{2} \) 1.67.ap
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61592410039119, −14.07701391474464, −13.82811217568157, −13.39883049603385, −12.71032544852644, −12.14501411056364, −11.68597936239600, −11.02259297904276, −10.30988257131382, −9.890659914533593, −9.510766962143243, −8.814096443601940, −8.229124108656420, −8.176991894575529, −7.468848598012820, −6.924801547115107, −6.406614818867721, −5.158054696205257, −5.070287635336593, −4.266945153874559, −3.834314527405157, −2.933455140787257, −2.223558085301079, −2.050988310444766, −1.422056687058371, 0, 1.422056687058371, 2.050988310444766, 2.223558085301079, 2.933455140787257, 3.834314527405157, 4.266945153874559, 5.070287635336593, 5.158054696205257, 6.406614818867721, 6.924801547115107, 7.468848598012820, 8.176991894575529, 8.229124108656420, 8.814096443601940, 9.510766962143243, 9.890659914533593, 10.30988257131382, 11.02259297904276, 11.68597936239600, 12.14501411056364, 12.71032544852644, 13.39883049603385, 13.82811217568157, 14.07701391474464, 14.61592410039119

Graph of the $Z$-function along the critical line