Properties

Label 2-55770-1.1-c1-0-64
Degree $2$
Conductor $55770$
Sign $-1$
Analytic cond. $445.325$
Root an. cond. $21.1027$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s + 11-s + 12-s − 15-s + 16-s + 2·17-s − 18-s + 4·19-s − 20-s − 22-s − 24-s + 25-s + 27-s − 2·29-s + 30-s − 32-s + 33-s − 2·34-s + 36-s + 2·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s + 0.288·12-s − 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.213·22-s − 0.204·24-s + 1/5·25-s + 0.192·27-s − 0.371·29-s + 0.182·30-s − 0.176·32-s + 0.174·33-s − 0.342·34-s + 1/6·36-s + 0.328·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55770\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(445.325\)
Root analytic conductor: \(21.1027\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55770,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61832550467839, −14.33574498843674, −13.67942139030831, −13.02520992976214, −12.71608848081319, −11.89933281250546, −11.46822233644963, −11.29672241759251, −10.21150357262708, −10.02989131331294, −9.552526037056165, −8.843208427921527, −8.420898133458836, −8.002445198930514, −7.363579130365818, −6.972395972919971, −6.391441355693329, −5.595464166882251, −5.038337051200255, −4.298512836978001, −3.472394524221525, −3.250451232438825, −2.385262793925395, −1.625693331032433, −1.001682898599446, 0, 1.001682898599446, 1.625693331032433, 2.385262793925395, 3.250451232438825, 3.472394524221525, 4.298512836978001, 5.038337051200255, 5.595464166882251, 6.391441355693329, 6.972395972919971, 7.363579130365818, 8.002445198930514, 8.420898133458836, 8.843208427921527, 9.552526037056165, 10.02989131331294, 10.21150357262708, 11.29672241759251, 11.46822233644963, 11.89933281250546, 12.71608848081319, 13.02520992976214, 13.67942139030831, 14.33574498843674, 14.61832550467839

Graph of the $Z$-function along the critical line