Properties

Label 2-55275-1.1-c1-0-7
Degree $2$
Conductor $55275$
Sign $-1$
Analytic cond. $441.373$
Root an. cond. $21.0088$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 7-s + 9-s − 11-s + 2·12-s − 5·13-s + 4·16-s − 6·17-s + 2·19-s − 21-s + 6·23-s − 27-s − 2·28-s − 3·29-s − 4·31-s + 33-s − 2·36-s − 2·37-s + 5·39-s + 43-s + 2·44-s + 12·47-s − 4·48-s − 6·49-s + 6·51-s + 10·52-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s + 0.377·7-s + 1/3·9-s − 0.301·11-s + 0.577·12-s − 1.38·13-s + 16-s − 1.45·17-s + 0.458·19-s − 0.218·21-s + 1.25·23-s − 0.192·27-s − 0.377·28-s − 0.557·29-s − 0.718·31-s + 0.174·33-s − 1/3·36-s − 0.328·37-s + 0.800·39-s + 0.152·43-s + 0.301·44-s + 1.75·47-s − 0.577·48-s − 6/7·49-s + 0.840·51-s + 1.38·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55275\)    =    \(3 \cdot 5^{2} \cdot 11 \cdot 67\)
Sign: $-1$
Analytic conductor: \(441.373\)
Root analytic conductor: \(21.0088\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 \)
11 \( 1 + T \)
67 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.65462712674590, −14.13944619826016, −13.56088940902463, −13.10746244583254, −12.68274519491221, −12.20179832428596, −11.58963328050881, −11.07446204803469, −10.55947323830341, −10.06228223754192, −9.431612679056157, −8.999124037776810, −8.608737504838645, −7.762214751234063, −7.277836693061933, −6.934803902748071, −6.008859522181895, −5.386032680682715, −5.063820175967520, −4.471886491520143, −4.061010655048842, −3.143707497067568, −2.442098051055299, −1.655546455443157, −0.7001231825265573, 0, 0.7001231825265573, 1.655546455443157, 2.442098051055299, 3.143707497067568, 4.061010655048842, 4.471886491520143, 5.063820175967520, 5.386032680682715, 6.008859522181895, 6.934803902748071, 7.277836693061933, 7.762214751234063, 8.608737504838645, 8.999124037776810, 9.431612679056157, 10.06228223754192, 10.55947323830341, 11.07446204803469, 11.58963328050881, 12.20179832428596, 12.68274519491221, 13.10746244583254, 13.56088940902463, 14.13944619826016, 14.65462712674590

Graph of the $Z$-function along the critical line