Properties

Label 2-550-1.1-c1-0-12
Degree $2$
Conductor $550$
Sign $-1$
Analytic cond. $4.39177$
Root an. cond. $2.09565$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s + 4-s − 3·6-s − 7-s + 8-s + 6·9-s − 11-s − 3·12-s − 14-s + 16-s − 5·17-s + 6·18-s − 7·19-s + 3·21-s − 22-s − 8·23-s − 3·24-s − 9·27-s − 28-s + 3·29-s − 5·31-s + 32-s + 3·33-s − 5·34-s + 6·36-s − 37-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 1/2·4-s − 1.22·6-s − 0.377·7-s + 0.353·8-s + 2·9-s − 0.301·11-s − 0.866·12-s − 0.267·14-s + 1/4·16-s − 1.21·17-s + 1.41·18-s − 1.60·19-s + 0.654·21-s − 0.213·22-s − 1.66·23-s − 0.612·24-s − 1.73·27-s − 0.188·28-s + 0.557·29-s − 0.898·31-s + 0.176·32-s + 0.522·33-s − 0.857·34-s + 36-s − 0.164·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(550\)    =    \(2 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(4.39177\)
Root analytic conductor: \(2.09565\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
11 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 7 T + p T^{2} \) 1.71.h
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.63395836942048087882037196254, −9.949177863209794004022035401564, −8.500433692387952608359829976927, −7.13910609406921513970960332408, −6.38067572656577564407783222886, −5.80649463440223025002162889007, −4.73853812405040226503164718551, −3.98662044483560965500927790599, −2.08731553991579213664182261622, 0, 2.08731553991579213664182261622, 3.98662044483560965500927790599, 4.73853812405040226503164718551, 5.80649463440223025002162889007, 6.38067572656577564407783222886, 7.13910609406921513970960332408, 8.500433692387952608359829976927, 9.949177863209794004022035401564, 10.63395836942048087882037196254

Graph of the $Z$-function along the critical line