Properties

Label 2-54450-1.1-c1-0-154
Degree $2$
Conductor $54450$
Sign $-1$
Analytic cond. $434.785$
Root an. cond. $20.8515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 16-s + 2·17-s − 2·19-s − 6·23-s − 2·29-s + 32-s + 2·34-s + 6·37-s − 2·38-s − 2·41-s − 2·43-s − 6·46-s + 2·47-s − 7·49-s − 2·53-s − 2·58-s + 8·59-s − 4·61-s + 64-s + 4·67-s + 2·68-s − 2·71-s − 10·73-s + 6·74-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s + 1/4·16-s + 0.485·17-s − 0.458·19-s − 1.25·23-s − 0.371·29-s + 0.176·32-s + 0.342·34-s + 0.986·37-s − 0.324·38-s − 0.312·41-s − 0.304·43-s − 0.884·46-s + 0.291·47-s − 49-s − 0.274·53-s − 0.262·58-s + 1.04·59-s − 0.512·61-s + 1/8·64-s + 0.488·67-s + 0.242·68-s − 0.237·71-s − 1.17·73-s + 0.697·74-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(434.785\)
Root analytic conductor: \(20.8515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 54450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.67307611466692, −14.21928540259210, −13.64667392528238, −13.11805893987757, −12.76384845645436, −12.13035503433242, −11.68819694922777, −11.27981543475465, −10.56633539677463, −10.14516951049801, −9.626635892069517, −8.981739327602330, −8.275984310061694, −7.858729398507129, −7.287624400343183, −6.650160123681773, −6.009650075564761, −5.757689375931660, −4.870566685287225, −4.502874157194706, −3.719103572993444, −3.334960900085937, −2.442277475916747, −1.937704628656255, −1.076743351307710, 0, 1.076743351307710, 1.937704628656255, 2.442277475916747, 3.334960900085937, 3.719103572993444, 4.502874157194706, 4.870566685287225, 5.757689375931660, 6.009650075564761, 6.650160123681773, 7.287624400343183, 7.858729398507129, 8.275984310061694, 8.981739327602330, 9.626635892069517, 10.14516951049801, 10.56633539677463, 11.27981543475465, 11.68819694922777, 12.13035503433242, 12.76384845645436, 13.11805893987757, 13.64667392528238, 14.21928540259210, 14.67307611466692

Graph of the $Z$-function along the critical line