Properties

Label 2-54450-1.1-c1-0-116
Degree $2$
Conductor $54450$
Sign $-1$
Analytic cond. $434.785$
Root an. cond. $20.8515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3·7-s − 8-s − 6·13-s − 3·14-s + 16-s + 7·17-s − 5·19-s − 6·23-s + 6·26-s + 3·28-s + 5·29-s − 3·31-s − 32-s − 7·34-s − 3·37-s + 5·38-s + 2·41-s + 4·43-s + 6·46-s − 2·47-s + 2·49-s − 6·52-s − 53-s − 3·56-s − 5·58-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.13·7-s − 0.353·8-s − 1.66·13-s − 0.801·14-s + 1/4·16-s + 1.69·17-s − 1.14·19-s − 1.25·23-s + 1.17·26-s + 0.566·28-s + 0.928·29-s − 0.538·31-s − 0.176·32-s − 1.20·34-s − 0.493·37-s + 0.811·38-s + 0.312·41-s + 0.609·43-s + 0.884·46-s − 0.291·47-s + 2/7·49-s − 0.832·52-s − 0.137·53-s − 0.400·56-s − 0.656·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(434.785\)
Root analytic conductor: \(20.8515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 54450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 7 T + p T^{2} \) 1.71.h
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61304941955152, −14.45828180212698, −13.86583640827492, −13.03777271588751, −12.38046068227272, −11.96734410465430, −11.85086158262700, −10.85051225323881, −10.61967041024297, −9.891818989919220, −9.743054679016801, −8.883909909733598, −8.386232343343576, −7.787050994140126, −7.617185879313458, −6.957397763852799, −6.201351558564902, −5.642625295652558, −4.994683845901432, −4.533056773251094, −3.773698693586240, −2.957373951701172, −2.215629586316284, −1.792761997500540, −0.9155565065734313, 0, 0.9155565065734313, 1.792761997500540, 2.215629586316284, 2.957373951701172, 3.773698693586240, 4.533056773251094, 4.994683845901432, 5.642625295652558, 6.201351558564902, 6.957397763852799, 7.617185879313458, 7.787050994140126, 8.386232343343576, 8.883909909733598, 9.743054679016801, 9.891818989919220, 10.61967041024297, 10.85051225323881, 11.85086158262700, 11.96734410465430, 12.38046068227272, 13.03777271588751, 13.86583640827492, 14.45828180212698, 14.61304941955152

Graph of the $Z$-function along the critical line