Properties

Label 2-54208-1.1-c1-0-46
Degree $2$
Conductor $54208$
Sign $1$
Analytic cond. $432.853$
Root an. cond. $20.8051$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4·5-s − 7-s + 9-s − 8·15-s + 2·17-s − 2·19-s + 2·21-s + 8·23-s + 11·25-s + 4·27-s + 2·29-s + 4·31-s − 4·35-s + 6·37-s + 2·41-s + 8·43-s + 4·45-s − 4·47-s + 49-s − 4·51-s + 10·53-s + 4·57-s − 6·59-s + 4·61-s − 63-s + 12·67-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.78·5-s − 0.377·7-s + 1/3·9-s − 2.06·15-s + 0.485·17-s − 0.458·19-s + 0.436·21-s + 1.66·23-s + 11/5·25-s + 0.769·27-s + 0.371·29-s + 0.718·31-s − 0.676·35-s + 0.986·37-s + 0.312·41-s + 1.21·43-s + 0.596·45-s − 0.583·47-s + 1/7·49-s − 0.560·51-s + 1.37·53-s + 0.529·57-s − 0.781·59-s + 0.512·61-s − 0.125·63-s + 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54208\)    =    \(2^{6} \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(432.853\)
Root analytic conductor: \(20.8051\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 54208,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.876685026\)
\(L(\frac12)\) \(\approx\) \(2.876685026\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 4 T + p T^{2} \) 1.5.ae
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.41092887110111, −13.80361544943950, −13.37362690088019, −12.87082501222965, −12.45839935430298, −11.97392366696250, −11.10796030881363, −10.89967725459783, −10.37972939428556, −9.778283388692003, −9.459127466717601, −8.861326320914374, −8.282646428418105, −7.375439534296476, −6.750341391187713, −6.286721380659779, −6.037601900328191, −5.224233472141577, −5.134841039190967, −4.342580632425200, −3.345646256004185, −2.622714313080724, −2.174634431080021, −1.047461229532564, −0.7842173292074421, 0.7842173292074421, 1.047461229532564, 2.174634431080021, 2.622714313080724, 3.345646256004185, 4.342580632425200, 5.134841039190967, 5.224233472141577, 6.037601900328191, 6.286721380659779, 6.750341391187713, 7.375439534296476, 8.282646428418105, 8.861326320914374, 9.459127466717601, 9.778283388692003, 10.37972939428556, 10.89967725459783, 11.10796030881363, 11.97392366696250, 12.45839935430298, 12.87082501222965, 13.37362690088019, 13.80361544943950, 14.41092887110111

Graph of the $Z$-function along the critical line