Properties

Label 2-52800-1.1-c1-0-44
Degree $2$
Conductor $52800$
Sign $1$
Analytic cond. $421.610$
Root an. cond. $20.5331$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s + 11-s + 4·13-s + 2·17-s − 2·21-s + 2·23-s − 27-s + 2·29-s − 4·31-s − 33-s + 6·37-s − 4·39-s − 6·41-s − 12·43-s + 6·47-s − 3·49-s − 2·51-s + 2·63-s + 4·67-s − 2·69-s − 10·71-s − 2·73-s + 2·77-s + 2·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s + 0.301·11-s + 1.10·13-s + 0.485·17-s − 0.436·21-s + 0.417·23-s − 0.192·27-s + 0.371·29-s − 0.718·31-s − 0.174·33-s + 0.986·37-s − 0.640·39-s − 0.937·41-s − 1.82·43-s + 0.875·47-s − 3/7·49-s − 0.280·51-s + 0.251·63-s + 0.488·67-s − 0.240·69-s − 1.18·71-s − 0.234·73-s + 0.227·77-s + 0.225·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52800\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(421.610\)
Root analytic conductor: \(20.5331\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 52800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.369393409\)
\(L(\frac12)\) \(\approx\) \(2.369393409\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.56745256483145, −13.92051279363834, −13.36438123101853, −13.02584233273068, −12.29181650951690, −11.83910525443549, −11.33336468025828, −11.01740774884356, −10.41128806225513, −9.906480688126067, −9.274915772197600, −8.626667579177611, −8.234881326035959, −7.657019507786850, −6.926661550685826, −6.553866439710969, −5.780328483928967, −5.447667595204829, −4.721076881699392, −4.226502816491628, −3.509898767554416, −2.921565000975106, −1.811276946671198, −1.406260708096325, −0.5888729435221523, 0.5888729435221523, 1.406260708096325, 1.811276946671198, 2.921565000975106, 3.509898767554416, 4.226502816491628, 4.721076881699392, 5.447667595204829, 5.780328483928967, 6.553866439710969, 6.926661550685826, 7.657019507786850, 8.234881326035959, 8.626667579177611, 9.274915772197600, 9.906480688126067, 10.41128806225513, 11.01740774884356, 11.33336468025828, 11.83910525443549, 12.29181650951690, 13.02584233273068, 13.36438123101853, 13.92051279363834, 14.56745256483145

Graph of the $Z$-function along the critical line