Properties

Label 2-5220-1.1-c1-0-26
Degree $2$
Conductor $5220$
Sign $1$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 6·11-s + 6·13-s − 4·17-s + 2·19-s + 8·23-s + 25-s − 29-s − 2·31-s + 2·41-s − 7·49-s + 14·53-s + 6·55-s − 4·59-s + 6·61-s + 6·65-s − 12·67-s + 12·71-s − 16·73-s − 2·79-s − 12·83-s − 4·85-s + 2·89-s + 2·95-s − 12·97-s − 18·101-s + 16·103-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.80·11-s + 1.66·13-s − 0.970·17-s + 0.458·19-s + 1.66·23-s + 1/5·25-s − 0.185·29-s − 0.359·31-s + 0.312·41-s − 49-s + 1.92·53-s + 0.809·55-s − 0.520·59-s + 0.768·61-s + 0.744·65-s − 1.46·67-s + 1.42·71-s − 1.87·73-s − 0.225·79-s − 1.31·83-s − 0.433·85-s + 0.211·89-s + 0.205·95-s − 1.21·97-s − 1.79·101-s + 1.57·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.836721568\)
\(L(\frac12)\) \(\approx\) \(2.836721568\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
29 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.513077455812255446528416710331, −7.27789919764118822706359733344, −6.70607134688902911171124468494, −6.15654826081556801683727372401, −5.41455840500070055565313996269, −4.38185690418490497827832247613, −3.76887481885124968449186648583, −2.92888751042091936492370199975, −1.65926544369794670209185082702, −1.02787257655212437693741336580, 1.02787257655212437693741336580, 1.65926544369794670209185082702, 2.92888751042091936492370199975, 3.76887481885124968449186648583, 4.38185690418490497827832247613, 5.41455840500070055565313996269, 6.15654826081556801683727372401, 6.70607134688902911171124468494, 7.27789919764118822706359733344, 8.513077455812255446528416710331

Graph of the $Z$-function along the critical line