Properties

Label 2-51744-1.1-c1-0-67
Degree $2$
Conductor $51744$
Sign $1$
Analytic cond. $413.177$
Root an. cond. $20.3267$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s − 11-s − 13-s + 2·15-s − 4·17-s + 19-s + 2·23-s − 25-s − 27-s − 6·29-s − 5·31-s + 33-s + 7·37-s + 39-s − 3·43-s − 2·45-s − 8·47-s + 4·51-s − 12·53-s + 2·55-s − 57-s − 10·59-s − 10·61-s + 2·65-s − 3·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s − 0.301·11-s − 0.277·13-s + 0.516·15-s − 0.970·17-s + 0.229·19-s + 0.417·23-s − 1/5·25-s − 0.192·27-s − 1.11·29-s − 0.898·31-s + 0.174·33-s + 1.15·37-s + 0.160·39-s − 0.457·43-s − 0.298·45-s − 1.16·47-s + 0.560·51-s − 1.64·53-s + 0.269·55-s − 0.132·57-s − 1.30·59-s − 1.28·61-s + 0.248·65-s − 0.366·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51744\)    =    \(2^{5} \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(413.177\)
Root analytic conductor: \(20.3267\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 51744,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.03319973276004, −14.68986376796689, −13.92788612651403, −13.31460016035538, −12.86497203611231, −12.51361719766798, −11.72060157350521, −11.45264550718787, −11.01347538747228, −10.53149787885900, −9.818975388514362, −9.263974370408206, −8.839598809582535, −7.960021389075466, −7.651244525998883, −7.185287678992993, −6.457943692787810, −5.978769887216576, −5.300529208592367, −4.598996798586402, −4.338441600253682, −3.470558452542389, −2.972104655066766, −2.006948350364429, −1.339480236996260, 0, 0, 1.339480236996260, 2.006948350364429, 2.972104655066766, 3.470558452542389, 4.338441600253682, 4.598996798586402, 5.300529208592367, 5.978769887216576, 6.457943692787810, 7.185287678992993, 7.651244525998883, 7.960021389075466, 8.839598809582535, 9.263974370408206, 9.818975388514362, 10.53149787885900, 11.01347538747228, 11.45264550718787, 11.72060157350521, 12.51361719766798, 12.86497203611231, 13.31460016035538, 13.92788612651403, 14.68986376796689, 15.03319973276004

Graph of the $Z$-function along the critical line