Properties

Label 2-51744-1.1-c1-0-40
Degree $2$
Conductor $51744$
Sign $-1$
Analytic cond. $413.177$
Root an. cond. $20.3267$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s + 11-s + 2·13-s − 2·15-s − 2·17-s + 4·19-s − 25-s + 27-s − 6·29-s + 4·31-s + 33-s − 2·37-s + 2·39-s + 6·41-s + 4·43-s − 2·45-s − 8·47-s − 2·51-s − 6·53-s − 2·55-s + 4·57-s + 12·59-s + 10·61-s − 4·65-s − 4·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.301·11-s + 0.554·13-s − 0.516·15-s − 0.485·17-s + 0.917·19-s − 1/5·25-s + 0.192·27-s − 1.11·29-s + 0.718·31-s + 0.174·33-s − 0.328·37-s + 0.320·39-s + 0.937·41-s + 0.609·43-s − 0.298·45-s − 1.16·47-s − 0.280·51-s − 0.824·53-s − 0.269·55-s + 0.529·57-s + 1.56·59-s + 1.28·61-s − 0.496·65-s − 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51744\)    =    \(2^{5} \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(413.177\)
Root analytic conductor: \(20.3267\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 51744,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.74363840057468, −14.28198810021630, −13.73595308797507, −13.20188468672435, −12.80469367531662, −12.14404861030968, −11.52222758077270, −11.34190955690750, −10.71227408918229, −9.898519971275222, −9.615576146666879, −8.848248113201563, −8.544845640735447, −7.837322448920371, −7.526090162314431, −6.906068187986446, −6.314554067471434, −5.605440137336486, −4.982898136149467, −4.093276717762051, −3.949598573412754, −3.200843879071279, −2.597727500565553, −1.725725943805248, −1.001769286249007, 0, 1.001769286249007, 1.725725943805248, 2.597727500565553, 3.200843879071279, 3.949598573412754, 4.093276717762051, 4.982898136149467, 5.605440137336486, 6.314554067471434, 6.906068187986446, 7.526090162314431, 7.837322448920371, 8.544845640735447, 8.848248113201563, 9.615576146666879, 9.898519971275222, 10.71227408918229, 11.34190955690750, 11.52222758077270, 12.14404861030968, 12.80469367531662, 13.20188468672435, 13.73595308797507, 14.28198810021630, 14.74363840057468

Graph of the $Z$-function along the critical line