Properties

Label 2-51425-1.1-c1-0-35
Degree $2$
Conductor $51425$
Sign $-1$
Analytic cond. $410.630$
Root an. cond. $20.2640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 2·4-s + 2·6-s − 2·9-s + 2·12-s + 2·13-s − 4·16-s − 17-s − 4·18-s − 19-s + 23-s + 4·26-s − 5·27-s + 8·31-s − 8·32-s − 2·34-s − 4·36-s + 5·37-s − 2·38-s + 2·39-s − 4·41-s + 10·43-s + 2·46-s − 10·47-s − 4·48-s − 7·49-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 4-s + 0.816·6-s − 2/3·9-s + 0.577·12-s + 0.554·13-s − 16-s − 0.242·17-s − 0.942·18-s − 0.229·19-s + 0.208·23-s + 0.784·26-s − 0.962·27-s + 1.43·31-s − 1.41·32-s − 0.342·34-s − 2/3·36-s + 0.821·37-s − 0.324·38-s + 0.320·39-s − 0.624·41-s + 1.52·43-s + 0.294·46-s − 1.45·47-s − 0.577·48-s − 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51425\)    =    \(5^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(410.630\)
Root analytic conductor: \(20.2640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 51425,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
11 \( 1 \)
17 \( 1 + T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 13 T + p T^{2} \) 1.59.n
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.73085453634706, −14.07288701946754, −13.76497245258798, −13.39184601135939, −12.80999486426905, −12.39678650413501, −11.68934456253618, −11.37889990906895, −10.89103091450874, −10.13369184566724, −9.494152860666522, −8.944631644528247, −8.458252872628734, −7.957680708718271, −7.243678562082568, −6.513008387010088, −6.095995644881016, −5.672538327868866, −4.807552211760248, −4.542566272821256, −3.702424929815898, −3.323092550511577, −2.639939769305830, −2.215507216587789, −1.157224496147131, 0, 1.157224496147131, 2.215507216587789, 2.639939769305830, 3.323092550511577, 3.702424929815898, 4.542566272821256, 4.807552211760248, 5.672538327868866, 6.095995644881016, 6.513008387010088, 7.243678562082568, 7.957680708718271, 8.458252872628734, 8.944631644528247, 9.494152860666522, 10.13369184566724, 10.89103091450874, 11.37889990906895, 11.68934456253618, 12.39678650413501, 12.80999486426905, 13.39184601135939, 13.76497245258798, 14.07288701946754, 14.73085453634706

Graph of the $Z$-function along the critical line