Properties

Label 51425.bn
Number of curves $1$
Conductor $51425$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 51425.bn1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(11\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 51425.bn do not have complex multiplication.

Modular form 51425.2.a.bn

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{6} - 2 q^{9} + 2 q^{12} + 2 q^{13} - 4 q^{16} - q^{17} - 4 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 51425.bn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51425.bn1 51425bh1 \([0, 1, 1, -458, -2381]\) \(45056/17\) \(4017578125\) \([]\) \(29760\) \(0.54239\) \(\Gamma_0(N)\)-optimal