Properties

Label 2-51425-1.1-c1-0-2
Degree $2$
Conductor $51425$
Sign $1$
Analytic cond. $410.630$
Root an. cond. $20.2640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 2·4-s + 6·6-s + 6·9-s − 6·12-s − 4·13-s − 4·16-s − 17-s − 12·18-s + 7·19-s − 7·23-s + 8·26-s − 9·27-s − 8·31-s + 8·32-s + 2·34-s + 12·36-s + 5·37-s − 14·38-s + 12·39-s − 8·41-s − 2·43-s + 14·46-s + 12·47-s + 12·48-s − 7·49-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.73·3-s + 4-s + 2.44·6-s + 2·9-s − 1.73·12-s − 1.10·13-s − 16-s − 0.242·17-s − 2.82·18-s + 1.60·19-s − 1.45·23-s + 1.56·26-s − 1.73·27-s − 1.43·31-s + 1.41·32-s + 0.342·34-s + 2·36-s + 0.821·37-s − 2.27·38-s + 1.92·39-s − 1.24·41-s − 0.304·43-s + 2.06·46-s + 1.75·47-s + 1.73·48-s − 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51425\)    =    \(5^{2} \cdot 11^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(410.630\)
Root analytic conductor: \(20.2640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 51425,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1890890829\)
\(L(\frac12)\) \(\approx\) \(0.1890890829\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
11 \( 1 \)
17 \( 1 + T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
3 \( 1 + p T + p T^{2} \) 1.3.d
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.49768944140995, −14.04865597159935, −13.23390190859719, −12.83987359727190, −12.01461545054650, −11.80660189022320, −11.40409097253206, −10.79300483532061, −10.23173078769586, −9.942488899585779, −9.507028898333869, −8.903588332428662, −8.101625055688053, −7.560187157538569, −7.124913150680831, −6.765350914497873, −5.869651726477466, −5.544115804244346, −4.869242252702580, −4.357512526034251, −3.539733960677102, −2.417735534040758, −1.739274422655507, −1.020136475854815, −0.2612475301562948, 0.2612475301562948, 1.020136475854815, 1.739274422655507, 2.417735534040758, 3.539733960677102, 4.357512526034251, 4.869242252702580, 5.544115804244346, 5.869651726477466, 6.765350914497873, 7.124913150680831, 7.560187157538569, 8.101625055688053, 8.903588332428662, 9.507028898333869, 9.942488899585779, 10.23173078769586, 10.79300483532061, 11.40409097253206, 11.80660189022320, 12.01461545054650, 12.83987359727190, 13.23390190859719, 14.04865597159935, 14.49768944140995

Graph of the $Z$-function along the critical line