Properties

Label 2-5070-1.1-c1-0-61
Degree $2$
Conductor $5070$
Sign $-1$
Analytic cond. $40.4841$
Root an. cond. $6.36271$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s − 4·11-s − 12-s − 15-s + 16-s − 4·17-s − 18-s + 4·19-s + 20-s + 4·22-s − 6·23-s + 24-s + 25-s − 27-s + 4·29-s + 30-s + 10·31-s − 32-s + 4·33-s + 4·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s − 0.288·12-s − 0.258·15-s + 1/4·16-s − 0.970·17-s − 0.235·18-s + 0.917·19-s + 0.223·20-s + 0.852·22-s − 1.25·23-s + 0.204·24-s + 1/5·25-s − 0.192·27-s + 0.742·29-s + 0.182·30-s + 1.79·31-s − 0.176·32-s + 0.696·33-s + 0.685·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5070\)    =    \(2 \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(40.4841\)
Root analytic conductor: \(6.36271\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5070,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.901434315855499682963822023957, −7.26766114261838982506005149392, −6.30764283392623055366254882260, −5.95728056451458192328862943885, −4.99350394050629391482887013196, −4.34144309594218459287685686258, −2.97126773034652539712249856957, −2.31377626904128281326235137101, −1.17810535440525737038736098475, 0, 1.17810535440525737038736098475, 2.31377626904128281326235137101, 2.97126773034652539712249856957, 4.34144309594218459287685686258, 4.99350394050629391482887013196, 5.95728056451458192328862943885, 6.30764283392623055366254882260, 7.26766114261838982506005149392, 7.901434315855499682963822023957

Graph of the $Z$-function along the critical line