Properties

Label 2-50430-1.1-c1-0-21
Degree $2$
Conductor $50430$
Sign $-1$
Analytic cond. $402.685$
Root an. cond. $20.0670$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s − 4·7-s + 8-s + 9-s − 10-s − 4·11-s + 12-s + 7·13-s − 4·14-s − 15-s + 16-s + 5·17-s + 18-s − 20-s − 4·21-s − 4·22-s + 23-s + 24-s + 25-s + 7·26-s + 27-s − 4·28-s − 3·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s + 0.288·12-s + 1.94·13-s − 1.06·14-s − 0.258·15-s + 1/4·16-s + 1.21·17-s + 0.235·18-s − 0.223·20-s − 0.872·21-s − 0.852·22-s + 0.208·23-s + 0.204·24-s + 1/5·25-s + 1.37·26-s + 0.192·27-s − 0.755·28-s − 0.557·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50430\)    =    \(2 \cdot 3 \cdot 5 \cdot 41^{2}\)
Sign: $-1$
Analytic conductor: \(402.685\)
Root analytic conductor: \(20.0670\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 50430,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
41 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 5 T + p T^{2} \) 1.37.af
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.77622645016642, −14.19185027597937, −13.60680545524273, −13.15575620893311, −12.87111229221699, −12.55591305680825, −11.75000246086614, −11.11765211252233, −10.75621526191647, −10.11305407410229, −9.606204403789862, −9.100494689337678, −8.254097355622750, −8.023418676914339, −7.355712121366649, −6.660952347035080, −6.311622686124468, −5.499015278440111, −5.264109606011873, −4.140664404163507, −3.656783682581561, −3.271036712670759, −2.861048650136938, −1.908480505443379, −1.046203704796895, 0, 1.046203704796895, 1.908480505443379, 2.861048650136938, 3.271036712670759, 3.656783682581561, 4.140664404163507, 5.264109606011873, 5.499015278440111, 6.311622686124468, 6.660952347035080, 7.355712121366649, 8.023418676914339, 8.254097355622750, 9.100494689337678, 9.606204403789862, 10.11305407410229, 10.75621526191647, 11.11765211252233, 11.75000246086614, 12.55591305680825, 12.87111229221699, 13.15575620893311, 13.60680545524273, 14.19185027597937, 14.77622645016642

Graph of the $Z$-function along the critical line