Properties

Label 50430.w
Number of curves $1$
Conductor $50430$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 50430.w1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(41\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 7 T + 13 T^{2}\) 1.13.ah
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 50430.w do not have complex multiplication.

Modular form 50430.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - 4 q^{7} + q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} + 7 q^{13} - 4 q^{14} - q^{15} + q^{16} + 5 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 50430.w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
50430.w1 50430y1 \([1, 0, 0, -1921, 253961]\) \(-466393214209/16325867520\) \(-27443783301120\) \([]\) \(240240\) \(1.2589\) \(\Gamma_0(N)\)-optimal