Properties

Label 2-50430-1.1-c1-0-7
Degree $2$
Conductor $50430$
Sign $-1$
Analytic cond. $402.685$
Root an. cond. $20.0670$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 4·7-s − 8-s + 9-s + 10-s − 3·11-s + 12-s − 13-s + 4·14-s − 15-s + 16-s − 18-s + 2·19-s − 20-s − 4·21-s + 3·22-s − 3·23-s − 24-s + 25-s + 26-s + 27-s − 4·28-s + 30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.904·11-s + 0.288·12-s − 0.277·13-s + 1.06·14-s − 0.258·15-s + 1/4·16-s − 0.235·18-s + 0.458·19-s − 0.223·20-s − 0.872·21-s + 0.639·22-s − 0.625·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s − 0.755·28-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50430\)    =    \(2 \cdot 3 \cdot 5 \cdot 41^{2}\)
Sign: $-1$
Analytic conductor: \(402.685\)
Root analytic conductor: \(20.0670\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 50430,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
41 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 7 T + p T^{2} \) 1.37.h
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.97568222312927, −14.16124610901855, −13.81432196891325, −13.11972672345065, −12.71697530444119, −12.26310736109288, −11.77297756896270, −10.92659991684040, −10.54766569469598, −9.973637533451954, −9.555832230368878, −9.137930701030633, −8.479679227289839, −7.960550794389634, −7.485116346710956, −6.880838247664331, −6.539391615141298, −5.645092833036808, −5.230450990668265, −4.209695735115673, −3.594803497142470, −3.109861480047127, −2.516918150600612, −1.848150664564422, −0.7059527307948165, 0, 0.7059527307948165, 1.848150664564422, 2.516918150600612, 3.109861480047127, 3.594803497142470, 4.209695735115673, 5.230450990668265, 5.645092833036808, 6.539391615141298, 6.880838247664331, 7.485116346710956, 7.960550794389634, 8.479679227289839, 9.137930701030633, 9.555832230368878, 9.973637533451954, 10.54766569469598, 10.92659991684040, 11.77297756896270, 12.26310736109288, 12.71697530444119, 13.11972672345065, 13.81432196891325, 14.16124610901855, 14.97568222312927

Graph of the $Z$-function along the critical line