Properties

Label 2-50400-1.1-c1-0-12
Degree $2$
Conductor $50400$
Sign $1$
Analytic cond. $402.446$
Root an. cond. $20.0610$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 11-s + 13-s − 3·17-s − 8·19-s − 4·23-s − 3·29-s + 6·31-s + 8·37-s − 10·41-s − 12·43-s − 3·47-s + 49-s + 12·53-s + 2·61-s + 4·67-s − 12·71-s + 10·73-s + 77-s + 13·79-s + 6·89-s + 91-s − 5·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.377·7-s + 0.301·11-s + 0.277·13-s − 0.727·17-s − 1.83·19-s − 0.834·23-s − 0.557·29-s + 1.07·31-s + 1.31·37-s − 1.56·41-s − 1.82·43-s − 0.437·47-s + 1/7·49-s + 1.64·53-s + 0.256·61-s + 0.488·67-s − 1.42·71-s + 1.17·73-s + 0.113·77-s + 1.46·79-s + 0.635·89-s + 0.104·91-s − 0.507·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50400\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(402.446\)
Root analytic conductor: \(20.0610\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 50400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.534955040\)
\(L(\frac12)\) \(\approx\) \(1.534955040\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.71520742779904, −13.89463484685951, −13.40294395110260, −13.18293091017019, −12.41886455146240, −11.88115771598614, −11.48339372312562, −10.92018946829130, −10.36678747710138, −9.950978160846085, −9.267396234523974, −8.608170707195786, −8.300770426263709, −7.840583777920307, −6.893433654267354, −6.538895793520255, −6.103453870595719, −5.280124665032415, −4.710442667774926, −4.089920371638306, −3.689842229649029, −2.688455859482583, −2.089654155675432, −1.503285173055344, −0.4240837272639244, 0.4240837272639244, 1.503285173055344, 2.089654155675432, 2.688455859482583, 3.689842229649029, 4.089920371638306, 4.710442667774926, 5.280124665032415, 6.103453870595719, 6.538895793520255, 6.893433654267354, 7.840583777920307, 8.300770426263709, 8.608170707195786, 9.267396234523974, 9.950978160846085, 10.36678747710138, 10.92018946829130, 11.48339372312562, 11.88115771598614, 12.41886455146240, 13.18293091017019, 13.40294395110260, 13.89463484685951, 14.71520742779904

Graph of the $Z$-function along the critical line