Properties

Label 2-48960-1.1-c1-0-44
Degree $2$
Conductor $48960$
Sign $1$
Analytic cond. $390.947$
Root an. cond. $19.7723$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·7-s + 4·11-s − 2·13-s + 17-s + 8·19-s + 25-s − 10·29-s + 10·31-s + 4·35-s + 8·37-s + 2·41-s + 4·43-s + 6·47-s + 9·49-s + 6·53-s − 4·55-s − 8·59-s + 2·61-s + 2·65-s − 4·67-s + 12·73-s − 16·77-s − 10·79-s + 6·83-s − 85-s − 8·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.51·7-s + 1.20·11-s − 0.554·13-s + 0.242·17-s + 1.83·19-s + 1/5·25-s − 1.85·29-s + 1.79·31-s + 0.676·35-s + 1.31·37-s + 0.312·41-s + 0.609·43-s + 0.875·47-s + 9/7·49-s + 0.824·53-s − 0.539·55-s − 1.04·59-s + 0.256·61-s + 0.248·65-s − 0.488·67-s + 1.40·73-s − 1.82·77-s − 1.12·79-s + 0.658·83-s − 0.108·85-s − 0.847·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48960\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(390.947\)
Root analytic conductor: \(19.7723\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.978061696\)
\(L(\frac12)\) \(\approx\) \(1.978061696\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.52115682264651, −13.98568690778526, −13.55845708737691, −12.98555549756376, −12.39356925877485, −12.04546758809133, −11.55274254176174, −11.07154647507484, −10.22193093796097, −9.748953191996862, −9.333092225754860, −9.109171502049172, −8.130844607160345, −7.587958355542106, −7.067417232982875, −6.665894767824934, −5.814552226301369, −5.678112264428803, −4.570966790412757, −4.111691137270914, −3.382621789103544, −3.055461793564076, −2.261698000830541, −1.130726665381398, −0.5761331928344952, 0.5761331928344952, 1.130726665381398, 2.261698000830541, 3.055461793564076, 3.382621789103544, 4.111691137270914, 4.570966790412757, 5.678112264428803, 5.814552226301369, 6.665894767824934, 7.067417232982875, 7.587958355542106, 8.130844607160345, 9.109171502049172, 9.333092225754860, 9.748953191996862, 10.22193093796097, 11.07154647507484, 11.55274254176174, 12.04546758809133, 12.39356925877485, 12.98555549756376, 13.55845708737691, 13.98568690778526, 14.52115682264651

Graph of the $Z$-function along the critical line