Properties

Label 2-48510-1.1-c1-0-48
Degree $2$
Conductor $48510$
Sign $1$
Analytic cond. $387.354$
Root an. cond. $19.6813$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 8-s − 10-s − 11-s + 6·13-s + 16-s + 6·17-s − 20-s − 22-s + 4·23-s + 25-s + 6·26-s − 2·29-s + 32-s + 6·34-s − 2·37-s − 40-s − 2·41-s − 8·43-s − 44-s + 4·46-s + 12·47-s + 50-s + 6·52-s + 6·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s − 0.316·10-s − 0.301·11-s + 1.66·13-s + 1/4·16-s + 1.45·17-s − 0.223·20-s − 0.213·22-s + 0.834·23-s + 1/5·25-s + 1.17·26-s − 0.371·29-s + 0.176·32-s + 1.02·34-s − 0.328·37-s − 0.158·40-s − 0.312·41-s − 1.21·43-s − 0.150·44-s + 0.589·46-s + 1.75·47-s + 0.141·50-s + 0.832·52-s + 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48510 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48510 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48510\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(387.354\)
Root analytic conductor: \(19.6813\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48510,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.613108016\)
\(L(\frac12)\) \(\approx\) \(4.613108016\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.65696433291723, −13.83672311177402, −13.62960807999824, −13.08960711133268, −12.50266211633508, −12.03823128371386, −11.55600853945414, −11.00359185837493, −10.52655400750030, −10.11546840513510, −9.231182258630260, −8.751209457047187, −8.138851202008714, −7.667933810101527, −7.059062504508958, −6.495722358596143, −5.801028156693002, −5.439414373945102, −4.786471833681900, −4.029588916523651, −3.466867788028849, −3.179228526499256, −2.224933140126235, −1.353138483527294, −0.7335129984573424, 0.7335129984573424, 1.353138483527294, 2.224933140126235, 3.179228526499256, 3.466867788028849, 4.029588916523651, 4.786471833681900, 5.439414373945102, 5.801028156693002, 6.495722358596143, 7.059062504508958, 7.667933810101527, 8.138851202008714, 8.751209457047187, 9.231182258630260, 10.11546840513510, 10.52655400750030, 11.00359185837493, 11.55600853945414, 12.03823128371386, 12.50266211633508, 13.08960711133268, 13.62960807999824, 13.83672311177402, 14.65696433291723

Graph of the $Z$-function along the critical line