Properties

Label 2-220e2-1.1-c1-0-71
Degree $2$
Conductor $48400$
Sign $-1$
Analytic cond. $386.475$
Root an. cond. $19.6589$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s − 2·9-s + 4·13-s + 4·19-s − 21-s − 5·27-s − 6·29-s + 10·31-s − 8·37-s + 4·39-s − 3·41-s − 43-s + 9·47-s − 6·49-s + 12·53-s + 4·57-s − 6·59-s + 11·61-s + 2·63-s − 67-s + 6·71-s − 8·73-s − 14·79-s + 81-s − 12·83-s − 6·87-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s − 2/3·9-s + 1.10·13-s + 0.917·19-s − 0.218·21-s − 0.962·27-s − 1.11·29-s + 1.79·31-s − 1.31·37-s + 0.640·39-s − 0.468·41-s − 0.152·43-s + 1.31·47-s − 6/7·49-s + 1.64·53-s + 0.529·57-s − 0.781·59-s + 1.40·61-s + 0.251·63-s − 0.122·67-s + 0.712·71-s − 0.936·73-s − 1.57·79-s + 1/9·81-s − 1.31·83-s − 0.643·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48400\)    =    \(2^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(386.475\)
Root analytic conductor: \(19.6589\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 48400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.85903505205384, −14.13057721633686, −13.79243514221465, −13.44875064101842, −12.92988326325228, −12.13303435520696, −11.79632223945668, −11.19328318480173, −10.75435011903306, −9.946465931004438, −9.693367960928483, −8.925913013547057, −8.481002269261906, −8.228314755450613, −7.341432809833588, −6.949273840270014, −6.210522911821084, −5.619505149877714, −5.284334294887753, −4.219966045508317, −3.789489466819388, −3.073310879421270, −2.714028990245800, −1.772066939838338, −1.036666467267647, 0, 1.036666467267647, 1.772066939838338, 2.714028990245800, 3.073310879421270, 3.789489466819388, 4.219966045508317, 5.284334294887753, 5.619505149877714, 6.210522911821084, 6.949273840270014, 7.341432809833588, 8.228314755450613, 8.481002269261906, 8.925913013547057, 9.693367960928483, 9.946465931004438, 10.75435011903306, 11.19328318480173, 11.79632223945668, 12.13303435520696, 12.92988326325228, 13.44875064101842, 13.79243514221465, 14.13057721633686, 14.85903505205384

Graph of the $Z$-function along the critical line