Properties

Label 2-48050-1.1-c1-0-0
Degree $2$
Conductor $48050$
Sign $1$
Analytic cond. $383.681$
Root an. cond. $19.5877$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s − 3·9-s − 4·11-s + 2·13-s − 14-s + 16-s − 6·17-s + 3·18-s − 6·19-s + 4·22-s + 5·23-s − 2·26-s + 28-s − 10·29-s − 32-s + 6·34-s − 3·36-s + 8·37-s + 6·38-s − 6·41-s + 4·43-s − 4·44-s − 5·46-s − 3·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s − 9-s − 1.20·11-s + 0.554·13-s − 0.267·14-s + 1/4·16-s − 1.45·17-s + 0.707·18-s − 1.37·19-s + 0.852·22-s + 1.04·23-s − 0.392·26-s + 0.188·28-s − 1.85·29-s − 0.176·32-s + 1.02·34-s − 1/2·36-s + 1.31·37-s + 0.973·38-s − 0.937·41-s + 0.609·43-s − 0.603·44-s − 0.737·46-s − 0.437·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48050\)    =    \(2 \cdot 5^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(383.681\)
Root analytic conductor: \(19.5877\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2278762280\)
\(L(\frac12)\) \(\approx\) \(0.2278762280\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
31 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 10 T + p T^{2} \) 1.29.k
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + 15 T + p T^{2} \) 1.79.p
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61108553867520, −14.27037673931655, −13.20893636698156, −13.06362192116426, −12.80300301241755, −11.53842593919374, −11.33663181160614, −11.11827436033448, −10.41103792464868, −10.00281484559696, −9.065108571153669, −8.790596287705650, −8.410190151349530, −7.789178671778247, −7.249837977249906, −6.585228221436653, −6.018043037825347, −5.486065910066926, −4.839242141142660, −4.159452674300239, −3.373755451777424, −2.522287563513726, −2.270268102385046, −1.357567100729093, −0.1853268695902457, 0.1853268695902457, 1.357567100729093, 2.270268102385046, 2.522287563513726, 3.373755451777424, 4.159452674300239, 4.839242141142660, 5.486065910066926, 6.018043037825347, 6.585228221436653, 7.249837977249906, 7.789178671778247, 8.410190151349530, 8.790596287705650, 9.065108571153669, 10.00281484559696, 10.41103792464868, 11.11827436033448, 11.33663181160614, 11.53842593919374, 12.80300301241755, 13.06362192116426, 13.20893636698156, 14.27037673931655, 14.61108553867520

Graph of the $Z$-function along the critical line