Properties

Label 2-47808-1.1-c1-0-17
Degree $2$
Conductor $47808$
Sign $-1$
Analytic cond. $381.748$
Root an. cond. $19.5383$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 4·11-s − 6·13-s − 6·17-s + 6·19-s − 8·23-s + 11·25-s + 6·29-s − 4·31-s + 10·37-s − 2·41-s + 10·43-s − 4·47-s − 7·49-s − 12·53-s + 16·55-s + 4·59-s − 2·61-s + 24·65-s − 10·67-s + 8·71-s − 2·73-s − 10·79-s − 83-s + 24·85-s + 8·89-s − 24·95-s + ⋯
L(s)  = 1  − 1.78·5-s − 1.20·11-s − 1.66·13-s − 1.45·17-s + 1.37·19-s − 1.66·23-s + 11/5·25-s + 1.11·29-s − 0.718·31-s + 1.64·37-s − 0.312·41-s + 1.52·43-s − 0.583·47-s − 49-s − 1.64·53-s + 2.15·55-s + 0.520·59-s − 0.256·61-s + 2.97·65-s − 1.22·67-s + 0.949·71-s − 0.234·73-s − 1.12·79-s − 0.109·83-s + 2.60·85-s + 0.847·89-s − 2.46·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47808\)    =    \(2^{6} \cdot 3^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(381.748\)
Root analytic conductor: \(19.5383\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 47808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
83 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.84172789071974, −14.44344277338093, −13.91070727732164, −13.09259008249417, −12.74688480082572, −12.14836576482397, −11.79429451264103, −11.31192681741961, −10.79301459163678, −10.22331946254964, −9.582768320397396, −9.139868913631717, −8.205554626276628, −7.866301303356573, −7.652222885841392, −7.005759671028429, −6.420315447479326, −5.515201955576252, −4.906821303870147, −4.417658971797660, −4.039529995150327, −2.925109111636876, −2.831006540706792, −1.863114792173401, −0.5630582753442937, 0, 0.5630582753442937, 1.863114792173401, 2.831006540706792, 2.925109111636876, 4.039529995150327, 4.417658971797660, 4.906821303870147, 5.515201955576252, 6.420315447479326, 7.005759671028429, 7.652222885841392, 7.866301303356573, 8.205554626276628, 9.139868913631717, 9.582768320397396, 10.22331946254964, 10.79301459163678, 11.31192681741961, 11.79429451264103, 12.14836576482397, 12.74688480082572, 13.09259008249417, 13.91070727732164, 14.44344277338093, 14.84172789071974

Graph of the $Z$-function along the critical line