Properties

Label 2-47600-1.1-c1-0-24
Degree $2$
Conductor $47600$
Sign $-1$
Analytic cond. $380.087$
Root an. cond. $19.4958$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 3·9-s + 2·13-s − 17-s − 4·19-s − 6·29-s + 6·37-s − 6·41-s − 12·43-s + 8·47-s + 49-s + 2·53-s − 4·59-s + 2·61-s − 3·63-s + 12·67-s − 2·73-s + 8·79-s + 9·81-s + 12·83-s + 10·89-s + 2·91-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.377·7-s − 9-s + 0.554·13-s − 0.242·17-s − 0.917·19-s − 1.11·29-s + 0.986·37-s − 0.937·41-s − 1.82·43-s + 1.16·47-s + 1/7·49-s + 0.274·53-s − 0.520·59-s + 0.256·61-s − 0.377·63-s + 1.46·67-s − 0.234·73-s + 0.900·79-s + 81-s + 1.31·83-s + 1.05·89-s + 0.209·91-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47600\)    =    \(2^{4} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(380.087\)
Root analytic conductor: \(19.4958\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 47600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.88793360790700, −14.38933926872512, −13.75244246146460, −13.35780744085018, −12.87960679870942, −12.19167129274189, −11.63367009122284, −11.27972929838871, −10.76342786619336, −10.27811505933038, −9.563043400757523, −8.912137572016022, −8.627292472458330, −7.999441459513032, −7.570194970493450, −6.667527053752920, −6.326237005404367, −5.663367329420181, −5.123488046724930, −4.518986543965208, −3.712357044851454, −3.317133582594801, −2.328653629368799, −1.949811531193886, −0.8991224090459984, 0, 0.8991224090459984, 1.949811531193886, 2.328653629368799, 3.317133582594801, 3.712357044851454, 4.518986543965208, 5.123488046724930, 5.663367329420181, 6.326237005404367, 6.667527053752920, 7.570194970493450, 7.999441459513032, 8.627292472458330, 8.912137572016022, 9.563043400757523, 10.27811505933038, 10.76342786619336, 11.27972929838871, 11.63367009122284, 12.19167129274189, 12.87960679870942, 13.35780744085018, 13.75244246146460, 14.38933926872512, 14.88793360790700

Graph of the $Z$-function along the critical line