Properties

Label 2-467-1.1-c1-0-21
Degree $2$
Conductor $467$
Sign $-1$
Analytic cond. $3.72901$
Root an. cond. $1.93106$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 2·4-s + 2·5-s + 7-s + 6·9-s + 4·11-s + 6·12-s − 6·13-s − 6·15-s + 4·16-s − 7·17-s + 2·19-s − 4·20-s − 3·21-s − 7·23-s − 25-s − 9·27-s − 2·28-s − 8·29-s + 6·31-s − 12·33-s + 2·35-s − 12·36-s − 2·37-s + 18·39-s + 6·41-s − 4·43-s + ⋯
L(s)  = 1  − 1.73·3-s − 4-s + 0.894·5-s + 0.377·7-s + 2·9-s + 1.20·11-s + 1.73·12-s − 1.66·13-s − 1.54·15-s + 16-s − 1.69·17-s + 0.458·19-s − 0.894·20-s − 0.654·21-s − 1.45·23-s − 1/5·25-s − 1.73·27-s − 0.377·28-s − 1.48·29-s + 1.07·31-s − 2.08·33-s + 0.338·35-s − 2·36-s − 0.328·37-s + 2.88·39-s + 0.937·41-s − 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 467 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 467 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(467\)
Sign: $-1$
Analytic conductor: \(3.72901\)
Root analytic conductor: \(1.93106\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 467,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad467 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.56008739913459582142146844629, −9.696654753499776665780621827887, −9.238545729441004936060578659156, −7.67757313860881711666039536149, −6.52135648790445694751691086097, −5.81286116106470491906939419796, −4.85540010940614505787874939711, −4.25521155483662332316320381526, −1.77024146308666878291968722250, 0, 1.77024146308666878291968722250, 4.25521155483662332316320381526, 4.85540010940614505787874939711, 5.81286116106470491906939419796, 6.52135648790445694751691086097, 7.67757313860881711666039536149, 9.238545729441004936060578659156, 9.696654753499776665780621827887, 10.56008739913459582142146844629

Graph of the $Z$-function along the critical line