Properties

Label 2-45760-1.1-c1-0-25
Degree $2$
Conductor $45760$
Sign $-1$
Analytic cond. $365.395$
Root an. cond. $19.1153$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s − 2·9-s − 11-s + 13-s + 15-s − 17-s + 3·19-s + 21-s − 6·23-s + 25-s + 5·27-s + 29-s + 7·31-s + 33-s + 35-s − 7·37-s − 39-s + 6·41-s + 4·43-s + 2·45-s − 6·47-s − 6·49-s + 51-s + 5·53-s + 55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s − 2/3·9-s − 0.301·11-s + 0.277·13-s + 0.258·15-s − 0.242·17-s + 0.688·19-s + 0.218·21-s − 1.25·23-s + 1/5·25-s + 0.962·27-s + 0.185·29-s + 1.25·31-s + 0.174·33-s + 0.169·35-s − 1.15·37-s − 0.160·39-s + 0.937·41-s + 0.609·43-s + 0.298·45-s − 0.875·47-s − 6/7·49-s + 0.140·51-s + 0.686·53-s + 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45760\)    =    \(2^{6} \cdot 5 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(365.395\)
Root analytic conductor: \(19.1153\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 45760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 17 T + p T^{2} \) 1.89.ar
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.91440864506964, −14.26813707715826, −13.82308991019801, −13.48533564286422, −12.58757179654318, −12.25026930495475, −11.86668077345564, −11.20664924373369, −10.87874273058828, −10.25674095455098, −9.716506897778029, −9.126831999629770, −8.484664532425469, −7.988177425307290, −7.539959433844443, −6.680487895333409, −6.284824822797619, −5.779293777872292, −5.098542598525813, −4.581106792651636, −3.846408091880743, −3.165232044721456, −2.657873675094295, −1.713707241040880, −0.7405580217915563, 0, 0.7405580217915563, 1.713707241040880, 2.657873675094295, 3.165232044721456, 3.846408091880743, 4.581106792651636, 5.098542598525813, 5.779293777872292, 6.284824822797619, 6.680487895333409, 7.539959433844443, 7.988177425307290, 8.484664532425469, 9.126831999629770, 9.716506897778029, 10.25674095455098, 10.87874273058828, 11.20664924373369, 11.86668077345564, 12.25026930495475, 12.58757179654318, 13.48533564286422, 13.82308991019801, 14.26813707715826, 14.91440864506964

Graph of the $Z$-function along the critical line