Properties

Label 2-44352-1.1-c1-0-39
Degree $2$
Conductor $44352$
Sign $1$
Analytic cond. $354.152$
Root an. cond. $18.8189$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 7-s + 11-s − 6·13-s + 2·19-s − 4·23-s + 11·25-s − 2·29-s − 2·31-s + 4·35-s − 2·37-s + 4·43-s − 6·47-s + 49-s + 2·53-s + 4·55-s − 14·61-s − 24·65-s + 12·67-s − 8·71-s − 4·73-s + 77-s + 8·79-s + 2·83-s + 14·89-s − 6·91-s + 8·95-s + ⋯
L(s)  = 1  + 1.78·5-s + 0.377·7-s + 0.301·11-s − 1.66·13-s + 0.458·19-s − 0.834·23-s + 11/5·25-s − 0.371·29-s − 0.359·31-s + 0.676·35-s − 0.328·37-s + 0.609·43-s − 0.875·47-s + 1/7·49-s + 0.274·53-s + 0.539·55-s − 1.79·61-s − 2.97·65-s + 1.46·67-s − 0.949·71-s − 0.468·73-s + 0.113·77-s + 0.900·79-s + 0.219·83-s + 1.48·89-s − 0.628·91-s + 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 44352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 44352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(44352\)    =    \(2^{6} \cdot 3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(354.152\)
Root analytic conductor: \(18.8189\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 44352,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.298312879\)
\(L(\frac12)\) \(\approx\) \(3.298312879\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.65505183315709, −14.10429486253587, −13.75759942471364, −13.17339370950705, −12.64953476560878, −12.10569312152067, −11.68810630563918, −10.80885452908971, −10.45998817276524, −9.770514174760455, −9.564792776024709, −9.083133465333684, −8.379288008176381, −7.622183773900114, −7.189921252275511, −6.506241168647081, −5.955751374849411, −5.440381349850976, −4.922574289073444, −4.409633199342604, −3.386987553330019, −2.693940184611027, −1.994582718539007, −1.713427539662560, −0.6231211516248812, 0.6231211516248812, 1.713427539662560, 1.994582718539007, 2.693940184611027, 3.386987553330019, 4.409633199342604, 4.922574289073444, 5.440381349850976, 5.955751374849411, 6.506241168647081, 7.189921252275511, 7.622183773900114, 8.379288008176381, 9.083133465333684, 9.564792776024709, 9.770514174760455, 10.45998817276524, 10.80885452908971, 11.68810630563918, 12.10569312152067, 12.64953476560878, 13.17339370950705, 13.75759942471364, 14.10429486253587, 14.65505183315709

Graph of the $Z$-function along the critical line