Properties

Label 2-4416-1.1-c1-0-72
Degree $2$
Conductor $4416$
Sign $-1$
Analytic cond. $35.2619$
Root an. cond. $5.93817$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 2·7-s + 9-s − 6·11-s + 2·13-s − 2·15-s − 2·21-s + 23-s − 25-s − 27-s − 6·29-s − 8·31-s + 6·33-s + 4·35-s − 2·39-s + 10·41-s − 12·43-s + 2·45-s + 8·47-s − 3·49-s − 2·53-s − 12·55-s − 12·59-s − 4·61-s + 2·63-s + 4·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 0.755·7-s + 1/3·9-s − 1.80·11-s + 0.554·13-s − 0.516·15-s − 0.436·21-s + 0.208·23-s − 1/5·25-s − 0.192·27-s − 1.11·29-s − 1.43·31-s + 1.04·33-s + 0.676·35-s − 0.320·39-s + 1.56·41-s − 1.82·43-s + 0.298·45-s + 1.16·47-s − 3/7·49-s − 0.274·53-s − 1.61·55-s − 1.56·59-s − 0.512·61-s + 0.251·63-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4416\)    =    \(2^{6} \cdot 3 \cdot 23\)
Sign: $-1$
Analytic conductor: \(35.2619\)
Root analytic conductor: \(5.93817\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4416,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
23 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72047880217154070655817213438, −7.52450739343745495455790166819, −6.30687778302223289318527264405, −5.66537004424004383201735558506, −5.23091445179449772114465442965, −4.45808410287090706931387677434, −3.30037715777891240894020217870, −2.23440726888925536869693203702, −1.51685500861613377868289358777, 0, 1.51685500861613377868289358777, 2.23440726888925536869693203702, 3.30037715777891240894020217870, 4.45808410287090706931387677434, 5.23091445179449772114465442965, 5.66537004424004383201735558506, 6.30687778302223289318527264405, 7.52450739343745495455790166819, 7.72047880217154070655817213438

Graph of the $Z$-function along the critical line