Dirichlet series
| L(s) = 1 | − 11-s − 4·13-s + 2·17-s + 4·19-s − 7·23-s + 9·29-s + 2·31-s + 37-s + 8·41-s − 9·43-s + 4·47-s − 6·53-s + 4·59-s − 4·61-s + 9·67-s − 5·71-s − 10·73-s − 15·79-s − 6·83-s + 8·89-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ | 
| L(s) = 1 | − 0.301·11-s − 1.10·13-s + 0.485·17-s + 0.917·19-s − 1.45·23-s + 1.67·29-s + 0.359·31-s + 0.164·37-s + 1.24·41-s − 1.37·43-s + 0.583·47-s − 0.824·53-s + 0.520·59-s − 0.512·61-s + 1.09·67-s − 0.593·71-s − 1.17·73-s − 1.68·79-s − 0.658·83-s + 0.847·89-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ | 
Functional equation
Invariants
| Degree: | \(2\) | 
| Conductor: | \(44100\) = \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\) | 
| Sign: | $-1$ | 
| Analytic conductor: | \(352.140\) | 
| Root analytic conductor: | \(18.7654\) | 
| Motivic weight: | \(1\) | 
| Rational: | yes | 
| Arithmetic: | yes | 
| Character: | Trivial | 
| Primitive: | yes | 
| Self-dual: | yes | 
| Analytic rank: | \(1\) | 
| Selberg data: | \((2,\ 44100,\ (\ :1/2),\ -1)\) | 
Particular Values
| \(L(1)\) | \(=\) | \(0\) | 
| \(L(\frac12)\) | \(=\) | \(0\) | 
| \(L(\frac{3}{2})\) | not available | |
| \(L(1)\) | not available | 
Euler product
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | |
|---|---|---|---|
| bad | 2 | \( 1 \) | |
| 3 | \( 1 \) | ||
| 5 | \( 1 \) | ||
| 7 | \( 1 \) | ||
| good | 11 | \( 1 + T + p T^{2} \) | 1.11.b | 
| 13 | \( 1 + 4 T + p T^{2} \) | 1.13.e | |
| 17 | \( 1 - 2 T + p T^{2} \) | 1.17.ac | |
| 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae | |
| 23 | \( 1 + 7 T + p T^{2} \) | 1.23.h | |
| 29 | \( 1 - 9 T + p T^{2} \) | 1.29.aj | |
| 31 | \( 1 - 2 T + p T^{2} \) | 1.31.ac | |
| 37 | \( 1 - T + p T^{2} \) | 1.37.ab | |
| 41 | \( 1 - 8 T + p T^{2} \) | 1.41.ai | |
| 43 | \( 1 + 9 T + p T^{2} \) | 1.43.j | |
| 47 | \( 1 - 4 T + p T^{2} \) | 1.47.ae | |
| 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g | |
| 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae | |
| 61 | \( 1 + 4 T + p T^{2} \) | 1.61.e | |
| 67 | \( 1 - 9 T + p T^{2} \) | 1.67.aj | |
| 71 | \( 1 + 5 T + p T^{2} \) | 1.71.f | |
| 73 | \( 1 + 10 T + p T^{2} \) | 1.73.k | |
| 79 | \( 1 + 15 T + p T^{2} \) | 1.79.p | |
| 83 | \( 1 + 6 T + p T^{2} \) | 1.83.g | |
| 89 | \( 1 - 8 T + p T^{2} \) | 1.89.ai | |
| 97 | \( 1 + 10 T + p T^{2} \) | 1.97.k | |
| show more | |||
| show less | |||
Imaginary part of the first few zeros on the critical line
−14.77958580169016, −14.37170208359099, −14.00657768128940, −13.43672689960468, −12.81361571396025, −12.21860519430069, −11.92239963742930, −11.46160414496617, −10.61877913575237, −10.14695015240517, −9.775929198737916, −9.307046601585891, −8.358781917252210, −8.145613381557215, −7.407591260806258, −7.049678525501748, −6.212711926069787, −5.764984430925019, −5.058798608233593, −4.567950847482659, −3.930866772778692, −3.022371430126659, −2.659825485255379, −1.800063582056930, −0.9471331106443235, 0, 0.9471331106443235, 1.800063582056930, 2.659825485255379, 3.022371430126659, 3.930866772778692, 4.567950847482659, 5.058798608233593, 5.764984430925019, 6.212711926069787, 7.049678525501748, 7.407591260806258, 8.145613381557215, 8.358781917252210, 9.307046601585891, 9.775929198737916, 10.14695015240517, 10.61877913575237, 11.46160414496617, 11.92239963742930, 12.21860519430069, 12.81361571396025, 13.43672689960468, 14.00657768128940, 14.37170208359099, 14.77958580169016